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Catalytic promiscuity and the evolution of new enzymatic activities 
Patrick J O’Brien and Daniel Herschlag 

Several contemporary enzymes catalyze alternative reactions 

distinct from their normal biological reactions. In some cases 

the alternative reaction is similar to a reaction that is efficiently 

catalyzed by an evolutionary related enzyme. Alternative 

activities could have played an important role in the 

diversification of enzymes by providing a duplicated gene a 

head start towards being captured by adaptive evolution. 
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Introduction 
It is widely accepted that many enzymes evolved from 
preexisting enzymes via gene duplication [l-3]. The 
results of many elegant studies suggest that nature has 
used common binding sites and common mechanistic fea- 
tures to catalyze the analogous reactions with different 
substrates, and, further, has used common mechanistic 
features to catalyze different reactions [G-13]. Numerous 
enzyme superfamilies have been identified by sequence 
and structural homologies. These superfamilies, which 
share structural and functional features but include 
enzymes that can catalyze a number of different reactions, 
provide strong support for the central role of divergent 
evolution in biology (Figure 1; e.g., [5,6.8-311). 

Enzymes with the c@Lhydrolase fold provide an example 
of a superfamily with conserved mechanistic features that 
catalyze an array of different reactions [lo]. These enzymes 
have the same or/b-sheet architecture and superimposable 
catalytic triad of an aspartate or glutamate, a histidine, and a 
nucleophilic residue that is a serine, cysteine or aspartate 
(Figure la). The conserved histidine, positioned by the 
aspartate or glutamate, activates the nucleophilic residue for 
attack, leading to formation of an acyl enzyme intermediate. 
Different reactions are catalyzed. however (Figure la); for 
example, acetyicholinesterase hydrolyzes the ester bond of 
acetylcholine, h>idroxynitrile lyase breaks a carbon-carbon 
bond to release hydrogen cyanide from a cyanohydrin [32], 
semialdehyde dehalogenase cleaves a carbon-carbon bond 
adjacent to a carbonyl [33], and haloalkane dehalogenase 
hydrolyzes carbon-halogen bonds [ 101. 

The enzymes of the enolase superfamily also catalyze dif- 
ferent overall reactions, but each has a similar a/P-barrel 
fold and catalyzes the formation of a carbanion intermedi- 
ate via abstraction of a procon adjacent to a carboxylate, as 
discussed extensively by Gerlt, Babbit and colleagues 
[7,X.12]. Superposition of these enzyme structures aligns 
active-site residues, including a histidine and/or lysine 
that acr. via general acid/base catalysis and a divalent metal 
ion that stabilizes the development of negative charge 
(Figure lb; [6,7,27,31,3&3X]). 

Conservation of structural and catalytic features in the 
a/P-hydrolase-fold superfamily, in the enolase superfamily 
and in other superfamilies strongly suggests that enzymes 
in each superfamily arose via divergent evolution from a 
common ancestor to accept different substrates and to cat- 
alyze different reactions [S, 121. Despite the high degree of 
structural homology, enzymes within superfamilies often 
share as little as 10% sequence identity ([32] and refer- 
ences therein; see also [7,X?]). This suggests that once an 
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Figure 1 
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Representative enzyme superfamilies. 

Conserved active-site features of each 

superfamily are shown along with several 
enzymes and their substrates, illustrating the 

diversity of reactions catalyzed within the 
superfamilies. The overall reaction is shown or 

an arrow denotes the bond that is broken. 
(a) The a@-hydrolase-fold superfamily 

[10,32,331. (b) The enolase superfamily, 

shown with a bound enolate intermediate 
[6-8,27,31,341. (c) The a@-barrelshydrolase 

superfamily [9]. 

enzyme adopts a different function (i.e. catalyzes a differ- 
ent chemical transformation) sequence diverges rapidly 
[39]. The ability of residues that do not contact the sub- 
strates to influence substrate specificity and catalytic effi- 
ciency is expected to hasten divergence [40-Q], and 
distant evolutionary relationships are expected to be diffi- 
cult to identify solely from global sequence comparisons. 

Divergent evolution requires duplication to free a gene from 
its previous functional constraints. Random drift will cause 
an accumulation of mutations in duplicated genes, however, 
many of which will be deleterious to structure and function, 
thus rendering the probability of obtaining a new function 
extremely low, even in evolutionary terms [43]. I f  random 

drift has such low probability of generating a functional 
gene, how have enzymes evolved to catalyze such a remark- 
able diversity of reactions? Perhaps enzymes that evolved to 
catalyze one chemical transformation can, with some fre- 
quency, also catalyze alternative reactions at a low level. 
Such alternative activities might then provide the raw mate- 
rial for the evolution of new enzymes, as a newly duplicated 
gene that has an activity near the threshold level required to 
provide a selective advantage would have a head start 
towards being captured by adaptive evolution (Figure 2). 
Uncovering and understanding such activities could provide 
information about past and present evolutionary potential 
and pathways and could also help to guide random or 
directed engineering of enzymes with new activities. 
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Threshold model for evolution of a new activity. The gene product for a 

duplicated enzyme must provide a level of activity above a certain 
threshold to confer a selective advantage. The intensity of blue indicates 

the strength of selective pressure to improve the level of activity. The 
parenthesis shows that the activity level required for a selective 

advantage from the duplicated gene product is not discrete, as very low 
activities can give a slight selective advantage, whereas higher activities 

can give a large selective advantage. Three potential starting points, 

reflecting the activity of the enzyme encoded by a newly duplicated 
gene, are designated. A gene product with very low activity towards a 

desired reaction (1) requires many advantageous mutations (denoted 

by arrows) to achieve a level of activity sufficient to confer a selective 

advantage, whereas the vast majority of mutations will be neutral or 
detrimental. In contrast, a gene product with promiscuous activity near 

(2) or above (3) the threshold for selective advantage will have a higher 

probability of its gene being fixed in the genome and optimized for the 
new activity. The level of the threshold depends on the genetic 

background and extracellular environment. It is important to recognize 

the probabilistic nature of the evolutionary process. The particular 
pathway taken is chosen at random, but weighted by its probability 

relative to that of other potential pathways. A promiscuous activity near 
to or above the threshold for selective pressure does not therefore 

ensure that it will be optimized for the new activity because other 
pathways can exist. In addition, not every promiscuous activity can be 

readily optimized to efficient levels. Conversely, even an enzyme lacking 

significant activity for a particular reaction could, in some cases, rapidly 

acquire a selectable level of activity, perhaps aided by large insertions 
and swapping of domains between proteins. 

The ideas presented in this review are related to and 
extend the hypothesis presented by Jensen [3] for the cre- 
ation of new metabolic pathways from enzymes that were 
capable of accepting a wide range of related substrates 

[44,45]. We first describe several examples of enzymes that 
have been demonstrated to catalyze more than one type of 
reaction. These activities apparently represent the fortu- 
itous use of active-site features to catalyze an alternative 
reaction, and we refer to this as catalytic promiscuity. Next 
we describe examples of enzymes that catalyze an alter- 
native reaction and are evolutionarily related to modern 
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enzymes whose physiological function is to catalyze this 
second reaction. This raises the possibility that a modest 
level of promiscuity has indeed played a role in divergent 
evolution. We then review several successes in protein 
engineering in which pre-existing enzymes have been 

modified to carry out new activities. These examples show 
that single mutations can provide substantial contributions 
towards the optimization of a new activity. Finally, we 
discuss the possible role of catalytic promiscuity in the 
evolutionary divergence between enzyme superfamilies. 

Catalytic promiscuity of enzymes 
It has long been recognized that most enzymes accept 
some alternative substrates, usually substrates that are very 
similar to the normal substrates [a]. Here we introduce 
another level of catalytic promiscuity: enzymes with an 
ability to catalyze multiple chemical transformations that 
are normally classified as different types of reactions (e.g., 
different bonds are broken). The examples in Table 1 
indicate that some active sites can catalyze seemingly dis- 
parate reactions. We further suggest the possibility that 
many enzymes are able to provide a low level of activity in 
alternative reactions. 

A simple and common type of catalytic promiscuity is 
exemplified by chymotrypsin, which catalyzes the hydro- 
lysis of many different types of compounds, including 
amides, esters, thiol esters, acid chlorides and anhydrides 
[46]. Although bonds to different atoms are broken in each 
case, all of these substrates are thought to react via similar 
tetrahedral transition states or intermediates, with attack by 
a serine nucleophile at a carbon);] carbon in the first step of 
the reaction (Figure 3a shows the amide reaction). Chy- 
motrypsin also catalyzes attack on a tetrahedral phosphoryl 
group, however, a reaction that proceeds via a trigonal bi- 
pyramidal species (Figure 3b). This alternative reaction, 
which results in covalent modification of the enzyme. 
involves attack on a different atom, with different geome- 
try, and involves cleavage of a different type of bond. These 
adducts and reactions have been extensively characterized 
in several cases. The activated serine nucleophile is used in 
both reactions, and the oxyanion hole may be able to stabi- 
lize the buildup of charge in the transition states for both 
acyl transfer and phosphoryl transfer (e.g.: see 147,481 and 
references therein). Chymotrypsin therefore exhibits cat- 
alytic promiscuity by catalyzing both amidase and phospho- 
triesterase reactions at its active site. 

Bovine carbonic anhydrase II has been reported to have 
phosphotriesterase activity, in addition to its carbon esterase 
activity and its physiological CO2 hydratase activity (k-191; 
for a recent review of carbonic anhydrase. see [SO]). The 
Znz+-coordinated hydroxide ion that is the nucleophile for 
attack on a carbon ester or carbon dioxide via a tetrahedral 
transition state is also able to attack a phosphotriester. a 
reaction proceeding via a pentavalent transition state. 
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Table 1 

Examples of catalytic promiscuity. 

Enzyme Primary activity Promiscuous activity Catalytic proficiencya 

L-Aspariginaseb 

A-Esterase 

Carbonic anhydrase II 

Carbonic anhydrase Ill 

Chymotrypsin‘ 

Cytosine methyltransferase 

Myoglobin 

Pepsin A 

Phosphotriesterase (bacterial) 

Phytase 

Serum albumin 

Urease 

Amidohydrolase 

Esterase 

CO, hydratiomesterase 

CO, hydrationiesterase 

Amidase 

Cytosine methylation 

0, binding 

Amidase 

Phosphotriesterase 

Phosphomonoesterase 

Urease 

Nitrilase 

Phosphotriesterase 

Phosphotriesterase 

Phosphomonoesterase 

Phosphotriesterase 

Cytosine deamination 

Sulfoxidation 

Sulfite hydrolase 

Phosphodiesterase 

Sulfoxidation 

Esterase 
Kemp elimination 

Phosphoramidate hydrolysis 

4x 1O’OC 

9xlo6d 

8xiOge 

1 xlO”9 

-h 

3X108’ 

4x101’1 

3x 10’5k 

4x 10s’ 

3x t012m 
2x104" 

7x 106P 

aCatalytic proficiency [l 101 for the promiscuous activity is defined as the 

ratio of the apparent second-order enzymatic rate constant by the 
second-order nonenzymatic rate constant ({kJK,,,,}/ k2); for hydrolysis 

reactions k, = k,b,1[55 Ml. bS-Cyano-L-alanine is hydrolyzed to yield 

aspartic acid and ammonia, but no rate enhancement was reported. 
Another reaction catalyzed by this enzyme is the hydrolysis of 5-diazo- 

4-oxo-L-norvaline, which produces nitrogen gas [l 111. CEsterase and 

phosphotriesterase reactions are catalyzed, but the biological function is 

not known. Catalytic proficiency is shown for paraoxon (diethyl pnitro- 
phenyl phosphate); calculated from k,JK, = 1.4 x 1 O3 M-r s-1 [112] 

and k, = 3 x 1 Oe8 M-l s-l, estimated from the nonenzymatic hydrolysis of 

diethyl 2,4-dinitrophenyl phosphate using the leaving group dependence 
for attack of phenol on diethyl aryl phosphates [113,1 141. dFor hydroly- 

sis of dimethyl 2,4-dinitrophenyl phosphate [49] relative to the nonenzy 
matic hydrolysis of diethyl 2,4-dinitrophenyl phosphate [l 141. eFor the 

enzymatic hydrolysis of pnitrophenyl phosphate at pH 5.4 [51], relative 

to the nonenzymatic hydrolysis of p-nitrophenyl phosphate dianion, cor- 
rected to 25°C [l 151. fChymotrypsin also catalyzes acylation of His57 

from iV-carbobenzoxyphenylalanine chloromethyl ketone, with - 1 Os-fold 
rate enhancement relative to acylation of free N-acetyl histidine in solu- 

tion [116], and from p-nitrobenzene sulfonate, with -ZOO-fold rate 

enhancement relative to attack of free imidazole on this compound 

[l 171. aFor covalent inactivation by phenacyl methyl phosphonate rela- 

tive to nonenzymatic hydrolysis 1481. hNo value for the rate enhancement 
was reported [l 181. ‘For sulfoxidation of thioanisole, assuming saturating 

peroxide (k,,/K,,,, = 24 M-l s-l ; [119]), relative to the nonenzymatic rate 
constant under similar conditions (b = 1 x 1 Oe7 M-’ s-1; [120]). Other 

oxidation reactions are catalyzed, including the oxidation of thioethers, 

styrenes, and iodide, and mutants with increased oxidation activities 
have been engineered (e.g. [l 19,121-l 231). jFor phenyl sulfite hydroly- 

sis 11241. kFor hydrolysis of ethyl p-nitrophenyl phosphate in the pres- 

ence of 2 M dimethylamine, which stimulates the reaction [125]. The 
nonenzymatic hydrolysis of ethyl p-nitrophenyl phosphate was estimated 

from the hydrolysis of his-p-nitrophenyl phosphate; k, = 2 x 1 O-l3 M-l 
s-l, corrected from 80% to 25°C using the reported temperature 

dependence [126]. ‘For vanadium-dependent sulfoxidation of thioanisole 

with saturating vanadate, assuming saturating peroxide and subsaturat- 
ing thioanisole (k&K, -40 M-’ s-l), relative to the nonenzymatic reac- 
tion (ks = 1 x 1 O-7 M-t s-1) [120]. mFor acylation of human serum 

albumin by pnitrophenyl acetate (3 x 1 O4 M-l s-’ ; [55]), relative to the 
nonenzymatic hydrolysis reaction (k2 = 1 x 10-s M-’ s-’ ; [127]). “Cat- 
alytic proficiency relative to the nonenzymatic reaction catalyzed by alkyl 

amines [56,57]. PFor hydrolysis of phosphoramidate [128]. 

A different isozyme of carbonic anhydrase, carbonic anhy- Additional examples of promiscuous enzymes that cover a 
drase III, has been shown to catalyze the hydrolysis of a broad range of physiological reactions are summarized in 
phosphomonoester monoanion in addition to the hydrolysis Table 1, and more examples are discussed below. hlost 
of carbon esters and the hydration of carbon dioxide [Sl,SZ]. generally, the widespread preferential modification of 
It is possible that this phosphatase activity is physiologically enzyme active sites by covalent modifying reagents sug- 
important and that the enzyme is under selection for both gests that active-site features commonly accelerate the 
phosphatase and carbonic anhydrase activities [53,54]. rates of other reactions (for review, see [So]). 

Serum albumins, although not typically classified as 
enzymes, illustrate the principles of catalytic promiscuity 
by accelerating the Kemp elimination reaction, which 
involves general-base-catalyzed proton abstraction, and 
cleavage of an ester bond, which involves nucleophilic 
attack and results in acylation of the albumin [S-57]. The 
hydrophobic pocket of albumins contains a Iysine that 
appears to fortuitously act as a general base in the Kemp 
elimination and a tyrosine that acts as a nucleophile towards 
esters and amides [.%I,!%]. 

These observations are surprising if considered solely 
from the viewpoint that enzymes must have extraordinary 
specificity for a particular transition state relative to a 
ground state for the substrate, as evidenced by the large 
rate enhancements achieved by enzymes. Such exquisite 
specificity might be expected to impede the reactions of 
potential alternative substrates. 

Nevertheless, evolutionarily related enzymes often use con- 
served catalytic groups and mechanistic features to catalyze 
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Figure 3 

Catalytic promiscuity of chymotrypsin. 

(a) Acylation by an amide substrate. 
(b) Modification by a phosphonate diester. 

(a) (W 

L R’-NH2 

v 

A~PJ$~/P 
Ser195 

\ 
\ 
0: 

(742 

‘ti 
0 ‘C=O 

lN4 
N 

;-/ 

A 
- 

His57 

L 

!  

HO-R’ 

Serl95 

\ 
CH2 

b 7”’ 

‘P=O 

AR” 

His67 
I 

Chemwy & Bwlogy 

different reactions (e.g., [X,12]). Furthermore. there is typ- 
ically a concentration of potentially catalytic groups, such 
as metal ions, general acids and bases, hydrogen-bond 
donors and acceptors, nucleophiles, and bound cof’xtors, 
within an enzymatic active site. These functional groups 
could allow low levels of catalysis of alternative reactions, 
in which the role of these groups is the same or different 
as in the primary reaction. 

Although the catalytic proficiencies for the alternati1.e reac- 
tions in Table 1 are smaller than for their primary activities. 
substantial rate enhancements over the uncatalyzed reac- 
tions are achieved. These activities might approach or 
surpass the level required for a selective advantage under 
certain conditions. This could provide a duplicated gene 
that has an important head start towards being captured 
and optimized by adaptive evolution (Figure 2). 

Examples of catalytic promiscuity in divergent 
evolution 
Several enzymes have been found to have a low level of 
an alternative activity similar to the physiological activity 
of an evolutionarily related enzyme (Table 2). These 
examples, discussed below, raise the possibility that the 
emergence of a new enzyme might have been facilitated 
by catalytic promiscuity. 

Alkaline phosphatase 

Alkaline phosphatases share a high degree of structural simi- 
larity with arylsulfatases, despite their low sequence similar- 
ity. Superposition of the central 0 sheets of Escherichia co/i 
alkaline phosphatase and arylsulfatase B results in a root 

mean square deviation of 1.9 A for 169 Ca atoms (Figure 4a; 
[60]). This structural superposition aligns the nucleophilic 
residues, the phosphoryl/sulfuryl moieties, and divalent 
metal ions at the active sites, strongly suggesting that these 
two families of enzymes are distantly related b>- divergent 
evolution [60,61]. The recent observation that E. cali alka- 
line phosphatase has a low level of sulfatase activity raises 
the possibility that this activity played a role in the diver- 
gence of arylsulfatases and alkaline phosphatases ([62]: 
Table 2). Alkaline phosphatases and arylsulfatases have 
been grouped into a superfamil>- on the basis of conserved 
metal-binding ligands [21], and one member of this super- 
family, autotaxin, was suggested to have both phosphatase 
(i.e. phosphomonoesterase) and phosphodiesterase activity 
[63,64]. Alkaline phosphatase and arylsulfatase A also show 
phosphodiesterase activity, further extending the functional 
inter-relationship between members of the alkaline phos- 
phatase superfamily (Table 2). 

An ancestor of alkaline phosphatase might have been 
duplicated at times when there were selective advanmges 
for hydrolysis of sulfate esters or phosphate diesters. Natural 
selection could then have improved these promiscuous 
activities, ultimately resulting in the evolution of the effi- 
cient sulfatases and phosphodiesterases that are the current 
members of the alkaline phosphatase superfamily. 

Adenylate kinase 

Recently it was recognized that estrogen sulfotransferase, a 
sulfur-y1 transfer enzyme. is structurally homologous to a 
family of kinases that includes adenylate kinase. a phospho- 
ryl transfer enzyme (Figure Sa: [65]), suggesting that these 
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Table 2 

Enzymes with promiscuous catalysis of a reaction that is also catalyzed by an evolutionarily related enzyme. 

Enzyme Primary activity Promiscuous activity Catalytic proficiencya 

Adenylate kinase 

Alkaline phosphatase 

Arylsulfatase A 

Aspartate aminotransferase 

Autotaxin/ PC1 h 

o-glucarate dehydratase’ 

0sBs~ 

F’yruvate oxidasek 

Threonine synthase’ 

v-cpom 

Phosphoryl transfer 

Phosphomonoesterase 

Sulfatase 

Aminotransferase 

Phosphomonoesterase/phosphodiesterase 

Dehydratase 

0-succinylbenzoate synthase 

Pyruvate oxidase 

y-Elimination of phosphate 

Chloroperoxidase 

Sulfuryl transfer 

Sulfatase 
phosphodiesterase 

Cyclic phosphodiesterase 

P-Elimination 

P-Decarboxylationg 

PhosphomonoesteraseIphosphodiesterase 

Epimerase 

/V-Acylamino acid racemase 

Acetohydroxy acid synthase 

Dehydratase 

Phosphomonoesterase 

I xlo7b 
lx109C 

I x IO” d 

1 x 10’se 

7x104’ 
- 

- 
- 

1 x 10’3” 

aFor the promiscuous activity, as defined in Table 1. ‘Catalytic profi- and L-idarate has been reported, but this reversible side reaction, 

ciency calculated relative to the rate of nonenzymatic hydrolysis. which has no known physiological consequence, is nearly as efficient 

Nucleotide diphosphate kinase and pyruvate kinase also catalyze sul- as the dehydration reaction [36,140]. jo-Succinylbenzoate synthase 

fury1 transfer from adenosine 5’diphosphosulfate [66,129]. cFor the (OSSS) from Amycolaptosis was identified and cloned for its /V-acy- 

hydrolysis of p-nitrophenyl sulfate [62]. “For hydrolysis of bis-pnitro- lamino acid racemase activity [141], however, it has recently been 

phenyl phosphate by E. co/i alkaline phosphatase (P.J.O. and D.H., shown to be a proficient o-succinylbenzoate hydrolase (0. Palmer, J. 

unpublished observations). Alkaline phosphatases from other organ- Garrett, V. Sharma, R. Meganathan, P. Babbit and J. Gerlt, personal 

isms have also been reported to have phosphodiesterase activity communication). kPyruvate oxidase, which has sequence homology to 

[130,131 I. eFor hydrolysis of adenosine 3’,5’-monophosphate (CAMP) a family of acetohydroxy acid synthases, has been shown to also have 

at 37”C, pH 4.3 11321, relative to the estimated nonenzymatic hydroly a low level of acetohydroxy acid synthase activity, producing a-aceto- 

sis at 5O”C, pH 7.0 [133]. ‘For p-elimination of sulfate from L-serine lactate from pyruvate; no rate enhancement has been reported 11421. 

O-sulfate relative to a nonenzymatic model system. P-Elimination of ‘No value has been reported for the rate enhancement of L-serine and 

chloride from /3-chloro+-alanine is also catalyzed [134,135]. gWild-type L-threonine dehydration and deamination (see Figure 7a; 17.5, 771). 

catalyzes a low level of P-decarboxylation, but mutants with increased mPhytase, an acid phosphatase with a different fold than the vanadium- 

activity have also been identified (see Table 3; [79,60]). hNo reported dependent chloroperoxidase superfamily, has been suggested to have 

value for the rate enhancements. The physiological relevance of these the converse promiscuous activity, catalyzing a low level of a different 

reactions are not known [63,64]. There are also a number of examples vanadate-dependent peroxidation reaction, sulfoxidation (Table 

of phosphodiesterases with phosphomonoesterase activity [136-l 391, 1 ;[120]). “Vanadium-dependent chloroperoxidase (V-CPO) catalyzed 

although this alternative activity could arise from the protonated phos- hydrolysis of p-nitrophenyl phosphate [67]; catalytic proficiency is rela- 

phomonoester monoanionic species acting as a mimic of a phospho- tive to the nonenzymatic hydrolysis of p-nitrophenyl phosphate dianion, 

diester. ‘No rate enhancement for the intraconversion of o-glucarate corrected to 25’C [115]. 

enzymes evolved from a common ancestor [65]. The biolog- 
ical role of adenylate kinase is to transfer a phosphoryl group 
from adenosine 5’-triphosphate to adenosine S’-monophos- 
phate, but adenylate kinase also has a modest ability to 
transfer a sulfuryl group to adenosine 5’-monophosphate 
(Table 2; [66]). Estrogen sulfotransferase catalyzes a reaction 
analogous to this promiscuous activity of adenylate kinase- 
the transfer of a sulfuryl group from 3’-phosphoadenosine 
5’-phosphosulfate to estrogen (Figure 5b). Both enzymes 
have a binding pocket for an adenine nucleotide and several 
of the residues responsible for binding are conserved [65]. 
These results suggest an evolutionary diversification of 
enzymatic function facilitated by catalytic promiscuity, as 
outlined above for the alkaline phosphatase superfamily. 

also have phosphatase activity when vanadate is not present 
(Table 2; [67]). Although these activities constitute very 
different overall reactions, they involve enzyme-bound 
speciks that are structurally related. Vanadate, unlike phos- 
phate, readily forms stable pentacoordinate species and can 
therefore act as a transition-state analog for phosphoryl 
transfer (Figure 6; [70,71]). Indeed, vanadate binds to the 
modern-day chloroperoxidase as a pentavalent species, with 
trigonal bipyramidal geometry, and this bound vanadate 
participates directly in the haloperoxidase reaction ([72,73]; 
for a recent review, see [74]). Apparently, nature was first to 
discover and utilize a transition-state analog. 

Threonine synthase 

Vanadium-dependent chloroperoxidase 

The vanadium-dependent chloroperoxidase from CZUXW 
/aria inaepaLis has sequence homology to the PAP2 family 
of acid phosphatases, including conservation of active-site 
residues [67-69]. This chloroperoxidase has been shown to 

There is considerable evidence that enzymes within the 
same metabolic pathway and within parallel metabolic 
pathways are often related to one another by divergent 
evolution [3,5,27,44]. For example, threonine synthase and 
threonine dehydratase catalyze consecutive steps in threo- 
nine metabolism (Figure 7a). Threonine synthase from 
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Figure 4 

Evolutionary relationship between alkaline 

phosphatases and arylsulfatases [60,611. 

(a) Structures of E. co/i alkaline phosphatase 

(11431; 1 ALK) and human arylsulfatase B 
([61]; 1 FSU) were rendered with Insight. 

Structurally homologous a helices (red) and 
p strands (blue) are shown and the C, 

backbone is traced in gray. The active site 

3 *+ and bound phosphate group are shown 

for alkaline phosphatase and the active site 

Ca*+ and sulfuryl group are shown for 
arylsulfatase B [60,61]. Only one monomer of 

the alkaline phosphatase homodimer is 
shown. The smaller, carboxy-terminal domain 

of arylsulfatase B (top right) has no homology 

to alkaline phosphatase. (b) Reactions 

catalyzed by alkaline phosphatase. 
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Bacillus s.&tilis has both serine and threonine dehy- 
dratase activities in addition to its physiological threonine 
synthase activity [75]. This led Skarstedt and Greer [75] 
to propose an evolutionary relationship between threonine 
synthase and threonine dehydratase. Subsequent cloning 
and sequencing revealed significant overall sequence iden- 
tity between these two enzymes, providing strong support 
for the proposed evolutionary relationship [76]. This evo- 
lutionary relationship also extends to enzymes in differ- 
ent metabolic pathways. The p subunit of tryptophan syn- 
thase, which catalyzes a promiscuous dehydratase reaction 
with L-serine in addition to its physiological condensation 
of L-serine and indole to yield r,-tryptophan, and D-serine 
dehydratase, which catalyzes the physiological dehydratase 
reaction of D-serine, both have sequence homology to 
threonine synthase and threonine dehydratase [44,76]. The 
threonine synthase reaction, involving y-elimination of the 
phosphate of homoserine phosphate, and the dehydratase 
reactions, involving p-elimination of ammonia, branch from 
a common Schiff base intermediate with a bound pyridoxal 
S’-phosphate cofactor [44,77]. 

Analysis of sequence conservation and structural homology 
between these and other pyridoxal-phosphate-dependent 

enzymes has identified larger superfamilies of related 
enzymes that have apparently diverged to catalyze differ- 
ent types of reactions, such as transamination, racemization 
and a-decarboxylation, in addition to the y-elimination and 
p-elimination reactions discussed above (for reviews, see 
[14,45,78]). Many pyridoxal-phosphate-dependent enzymes 
catalyze side reactions that correspond to the main reac- 
tion of other pyridoxal-phosphate-dependent enzymes [14]. 
Aspartate aminotransferase provides a particularly well- 
studied example of a promiscuous pyridoxal-phosphate- 
dependent enzyme. Normally it transfers the amino group 
of aspartate or glutamate to Z-oxoglutarate or oxaloacetate 
(Figure 7b), but aspartate aminotransferase also has low 
levels of a-carbon racemization, P-decarboxylation and 
p-elimination activities (e.g., [79,80]). As shown in Figure 7b. 
these different reaction pathways branch after formation 
of a common quinonoid intermediate [78,80]. Furthermore, 
extensive mutagenesis has shown that substrate specificity 
and reaction specificity can be altered by a single muta- 
tion in aspartate aminotransferase (e.g., [42,79-811; see also 
[82-871). These observations suggest that the catalytic 
promiscuity of pyridoxal-phosphate-dependent enzymes 
could have facilitated the emergence of the current diver- 
sity of these enzymes [45]. 
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Adaption of modern enzymes to catalyze new 
reactions: examples from protein engineering 
The potential role of catalytic promiscuity in the evolution 
of new enzymatic activities is underscored by recent suc- 
cesses in protein engineering, demonstrating that single 
point mutations can substantially improve the ability of 
enzymes to carry out new reactions. Selected examples are 
described below (see [88-921 for additional examples). 

Steroid metabolism: reductase+dehydrogenase 

Two members of the aldo-keto reductase superfamily, A,-3- 
ketosteroid-5P-reductase (SP-reductase) and 3a-hydroxy- 
steroid dehydrogenase (~cx-HSD), catalyze consecutive steps 
in steroid hormone metabolism. These enzymes have a 

high degree of sequence identity and most of the postu- 
lated active-site residues are conserved. Each enzyme 
catalyzes the transfer of a hydride from NADPH and both 
use the same stereochemistry. SP-Reductase catalyzes the 
reduction of a carbon-carbon double bond in A4-3-keto- 
steroids, whereas 3a-HSD reduces a carbonyl of its sub- 
strate to the corresponding alcohol (Table 3; [93] and ref- 
erences therein). Jez and Penning [93] recently converted 
5P-reductase into a 3a-HSD with a single mutation, 
Hisll7-+Glu. This mutation introduces an active-site glu- 
tamic acid that is conserved as a histidine in Sb-reductase 
and conserved as a glutamic acid in 3~HSD. The ability 
of a point mutant of 5p-reductase to catalyze the ~CZ-HSD 
reaction provides strong functional evidence that these 
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two enzymes diverged from a common ancestor to cat- 
alyze consecutive reactions in a metabolic pathway [93]. 

Choline&erases: esterases+phosphotriesterases 
Cholinesterases have long been known to be inhibited by 
phosphotriesters and related compounds. These acti\-e sites 
greatly accelerate the rate of attack of the serinc nuclc- 
ophile on the phosphoryl center of phosphotriesters. Subse- 
quent turnover of the phosphorylated intermediate is slow, 
however, resulting in covalent inactivation of the enzyme. 
Mutating Glyl17 in the active site of human butyrylcholin- 
esterase to a histidine residue greatly enhances hydrolysis 
of this covalent adduct, thereby allowing multiple turnover 
(Table 3; [94]). It has been proposed that the introduced 
histidine is involved in activating a water molecule for 
attack on the phosphorylated intermediate [95]. Although 
this mutant is a more efficient phosphotriesterase, it is still 
susceptible to an aging reaction that inactivates the enzyme 
when phosphorylated intermediates are formed from certain 
phosphotriester-like compounds, such as soman [Z-(3.3-di- 
methylbutyl) methylphosphonofluoridate]. Glu197, when 
mutated to glutamine (Glu197-+Gln), decreases the aging 
reaction and, in conjunction with the Glyll7+His muta- 
tion, facilitates multiple turnover of soman [96]. 

Nature appears to have carried out a similar experiment on a 
homologous enzyme, acetylcholinesterase. Genetic analysis 
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of insecticide resistance in blowflies identified an acetyl- 
cholinesterase allele associated with increased resistance 
to phosphotriester-like insecticides ([97] and references 
therein). One of these mutations, Gly137+Aspl is sufficient 
to substantially increase phosphotriesterase activity, pre- 
sumably accelerating the rate of hydrolysis of the covalent 
intermediate in a manner analogous to the Glyll7+His 
mutation in human butylrylcholinesterase [98]. 

Papain and asparagine synthetase B: 
amidase/amidotransferase+nitrile hydratases 
Papain and asparagine synthetase B, an amidase and an 
amidotrdnsferdse. exhibit promiscuity by catalyzing nucleo- 
philic attack on nitriles. Their nitrile hydratase activities 
have been greatly improved by addition of a general acid 
residue (Table 3; [99,100]). Single point mutations, Gln19-+ 
Glu in papain and Asn74--+Asp in asparagine synthetase B, 
increase the rate of multiple turnover by more than lo-‘- 
fold. It has been suggested that the introduced residues act 
as general acids that facilitate the successive additions of 
water required to convert the nitrile to its carboxylic acid 
and ammonia products [99,100]. 

Cyclophilin: proline isomerase+proline-specific 
endopeptidase 
Cyclophilin catalyzes proline isomerization in polypep- 
tides. It was recently engineered to become a proline-spe- 
cific endopeptidase (Table 3: [loll). A series of mutations 
that add functional groups to the active site, Ala91+Ser/ 
PhelO4+His/Asn106+4sp, increases k,,JK\, for the endo- 
peptidase activity by 10h-fold relative to wild-type cyclo- 
philin. Strikingly, the ArgC)l+Ser mutation alone gives an 
-lo”-fold increase in endopeptidase activity, suggesting 
that catalytic machinery for this reaction is already present 
in the active site [loll. 

L-RibuloseG-phosphate 4-epimerase: epimerase+aldolase 
A key enzyme in the bacterial arabinose metabolic pathtvay 
is t,-rib&se-S-phosphate 4-epimerase (L-R~~P epimerase). 
which catalyzes the inversion of stereochemistry at C-4 of 
the sugars I,-ribulose-S-phosphate and D-xylulose-S-phos- 
phate, thereby connecting arabinose metabolism with the 
pentose phosphate pathway (Table 3). I,-RuSP epimerase 
has extensive sequence homology with E. co/i I,-fuculose- 
l-phosphate aldolase, including ligands of the active-site 
metal ion. These similarities suggest that this epimerase 
is evolutionarily related to class I1 aldolases [102-1041. 
Mutation of His94, a ligand of the epimerase active-site 
metal ion, to asparagine, uncovering an aldolase activity 
(Table 3; [104]). This mutant is able to condense dihy- 
droxyacetone phosphate and glycoaldehyde phosphate to 
produce I,-ribulose-S-phosphate and rl-xylulose-S-phos- 
phate, whereas the wild-type enzyme has no detectable 
activity for this aldol condensation. The discovery that 
His94+Asn I,-RuSP epimerase is an aldolase, coupled with 
the sequence homology to class II aldolases, suggests 
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(b) Aspartate aminotransferase catalyzes several reactions (adapted 

from (801). Transamination, the physiological reaction, uses aspartate 

or glutamate as an amino donor (the half reaction is shown); 

b-decarboxylation of aspartate yields alanine; p-elimination from serine 
(dehydration), serine-O-sulfate, or b-chloroalanine yields pyruvate; and 

a-racemization of alanine yields D- and L-alanine [79,80,134]. 

divergent evolution from a common ancestor with conser- play, an important role in the creation of new enzymes via 
vation of central mechanistic features for carbon-carbon divergent evolution. A low level of activity could decrease 

bond cleavage and formation [ 1041. or eliminate periods of random drift, thereby greatly 
increasing the probability that the duplicated gene for an 

An extensive role for catalytic promiscuity in enzyme be fixed in the genome and optimized via Dar- 
the diversification of enzymatic function? winian evolution to catalyze a new reaction (Figure 2; 
The results described above raise the possibility that cata- [43,1O.S]). Several examples of enzymes with catalytic 
lytic promiscuity could have played, and could continue to promiscuity that have more efficient evolutionary relatives 
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Table 3 

Examples of increased promiscuous activity from protein engineering. 

Enzyme New activity 
Catalytic 

proficiencya Reference 

Sa-Hydroxysteroid dehydrogenase 5P-Reductase 

Butyrylcholinesterase Phosphotriesterase 

Papain/asparagine synthetase B Nitrile hydratase 

Cyclophilin Endopeptidase 

L-Ribulose-5-phosphate 4-epimerase 

R2 % 

Aldolase 

10’0 

log 

10’3 

WI 

WI 

[99,100] 

[loll 

[lo41 

Aspartate aminotransferase Aspartate P-decarboxylase 

%atalytic proficiency for the new activity is defined as [(k,,,/K,)/k,], in which k, is the second-order rate constant for nonenzymatic hydrolysis. 

were described above, and point mutations have uncov- 
ered additional examples. We expect that there are many 
more examples, but convincing demonstration of low level 
alternative activities is experimentally challenging and has 
not been systematically investigated. Nevertheless, mea- 
surable catalytic promiscuity is not expected for all exam- 
ples of enzymes with close evolutionary relationships. In 
some cases the alternative activity will be below the 
threshold for selection, but within reach of a selectable 
level with a limited number of mutations, and in other 
cases the alternative activity will have been selected 

against or simply eliminated over the course of evolution. 

Enzyme superfamilies have been identified by common 
structural and mechanistic features that are shared among 
members, but there is also structural homology between a 
number of different superfamilies. For example, 18 differ- 
ent superfamilies share the a/b-barrel fold [106-1091. 
Could catalytic promiscuity have played a role in the mech- 
anistic divergence between these structural relatives? As 

noted above, active sites harbor a high concentration of 
functional groups that can play a variety of roles in differ- 
ent reactions. There is no reason to expect the alternative 
reactions to use active-site groups in the same roles that 
these groups are used in the normal reactions. For example, 
a divalent metal ion activates a hound water for nucle- 
ophilic attack in a/P-barrel-hydrolase superfamily reactions, 
whereas a divalent metal ion stabilizes negative charge 
accumulation on the enolate intermediate in enolase super- 
family reactions (Figure 1; [6,8,9.12]). As both enzymes 
share the overall alp-barrel fold, it is tempting to specu- 
late that the bound metal ion in one member of one of 
these superfamilies could have, along with other active- 
site features, fortuitously provided a low level of activity 
for a reaction of the other superfamily. Although we are 
not aware of any convincing evidence to support this par- 
ticular evolutionary pathway, this example underscores that 
it is common to see the same functional group carrying out 
different roles in different enzymatic reactions. The versa- 
tility of active-site functional groups, and the congregation 
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of these groups within active sites, might have allowed 
catalytic promiscuity to participate broadly in the diver- 
gence of enzymatic catalysis. 

Conclusions 
Uncovering how nature has created such a wealth of 
enzymatic diversity remains a fascinating challenge. The 
diversity of alternative reactions catalyzed at enzyme 
active sites and the above analysis suggest that a low 
level of catalytic promiscuity could be a common charac- 
teristic of enzymes. h low level of activity for a different 
reaction can greatly increase the probability that a dupli- 
cated enzyme will evolve to catalyze that new reaction 
by providing, or facilitating the establishment of, a selec- 
table activity subsequent to gene duplication. Catalytic 
promiscuity could have aided the evolution of new 
enzymes via divergent evolution, including enzymes that 
utilize different mechanisms and catalyze different types 
of reactions. 

The recent explosion in the identification of evolutionar- 
ily related superfamilies and the structural insights that 
allow effective comparisons between different members 
of these superfamilies will continue to contribute greatly 
to our understanding of enzymes. Analysis of these super- 
families, in conjunction with mechanistic understanding 
of how individual enzymes function. has already provided 
valuable clues for understanding evolutionary relation- 
ships between distantly related enzymes [8,9,12]. We 
expect that increased understanding of chemical mecha- 
nisms and the role of active-site features will continue to 
enrich our understanding of molecular evolution. 
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