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Abstract

Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level

ensemble models that accurately represent conformational heterogeneity is vital to deepen our

understanding of how proteins work. Modeling ensemble information from X-ray diffraction

data has been challenging, as traditional cryo-crystallography restricts conformational variability

while minimizing radiation damage. Recent advances have enabled the collection of high quality

diffraction data at ambient temperatures, revealing innate conformational heterogeneity and

temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at

temperatures ranging from 313 to 363K to provide a tutorial for the refinement of

multiconformer ensemble models. Integrating automated sampling and refinement tools with

manual adjustments, we obtained multiconformer models that describe alternative backbone and

sidechain conformations, their relative occupancies, and interconnections between conformers.

Our models revealed extensive and diverse conformational changes across temperature,

including increased bound peptide ligand occupancies, different Ca2+ binding site configurations

and altered rotameric distributions. These insights emphasize the value and need for

multiconformer model refinement to extract ensemble information from diffraction data and to

understand ensemble-function relationships.
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1 Introduction

All molecular processes are defined by energy landscapes, which are in turn manifested

by an ensemble of interconverting conformational states (Austin et al., 1975; Benkovic et al.,

2008; Benkovic and Hammes-Schiffer, 2003; Frauenfelder et al., 1991, 1988; Hammes et al.,

2011). For example, ligand binding affinity is defined by the relative population of the bound to

the unbound state(s), and enzymatic rates by the possibility of crossing to the transition state

from the ground state. Therefore, understanding protein functions requires obtaining and

comparing conformational ensembles in different bound states under physiologically-relevant

conditions. Because conformational ensembles reveal probabilities of states and therefore their

underlying energetics, they provide the possibility to relate structural features to thermodynamic

quantities for molecular processes – a goal unattainable using single conformer structural models

and an essential step towards a quantitative and predictive understanding of protein functions.

The need for conformational ensembles to decipher protein functions has long been

recognized, yet experimental approaches to obtain ensemble information are limited by their

resolution or by technological challenges. For example, nuclear magnetic resonance (NMR)

methods allow us to determine the degree of motion of protein groups and the rate of

interconversions between sub-states but do not reveal atomic-level details of these sub-states

(Ishima and Torchia, 2000; Kempf and Loria, 2003; Kleckner and Foster, 2011; Kovermann et

al., 2016; Mittermaier and Kay, 2006). Similarly, Förster resonance energy transfer (FRET)

experiments are used to study protein conformational dynamics, but only reveal large

conformational changes reported by the changes in two groups (the donor and the acceptor)

(Mazal and Haran, 2019; Okamoto and Sako, 2017; Schuler and Eaton, 2008). In contrast, X-ray

crystallography provides atomic-level information about protein three-dimensional structures.

The ability to model individual atom positions from diffraction data has allowed us to relate the

shape of a protein to its function (Indiani and O’Donnell, 2006; Kato et al., 2018), identify

specific residues involved in biological processes and propose models for how they function

(Robertus et al., 1972; Tsukada and Blow, 1985). In principle, X-ray diffraction data represent an

ensemble average from multiple conformational states (DePristo et al., 2004; Rejto and Freer,

1996; Smith et al., 1986), but obtaining and modeling ensembles from X-ray data have been

challenging for two practical reasons. First, the majority of PDB-deposited structures are

obtained under cryogenic conditions (~100 K) (Garman, 2003). While useful in reducing
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radiation damage, cryo-cooling alters the conformational landscape of a protein because the low

temperature strongly favors low enthalpy states and quenches many degrees of freedom

(Frauenfelder et al., 1979; Weik and Colletier, 2010). As shown in multiple studies, protein

dynamics typically undergo a significant change (termed “glass transition”) at ~180 to 200 K,

suggesting that structural features from models obtained under this temperature range may reflect

cryo-artifacts instead of physiologically-relevant protein features (Fraser et al., 2011; Halle,

2004; Keedy et al., 2014; Rasmussen et al., 1992; Tilton et al., 1992). Indeed, crystallographic

data obtained at ambient temperatures reveal conformational states that are hidden or different

from cryo structures (Fraser et al., 2011, 2009; Keedy et al., 2015b; Yabukarski et al., 2022).

Second, most of the structures deposited in the PDB are modeled as single conformers, which in

many cases do not explain the full density data (Smith et al., 1986). Single conformer models

typically use isotropic or anisotropic B-factors to represent variability of atomic positions, but

these parameters can only account for harmonic deviations from the average positions, with the

assumption that atoms fluctuate within a single local minimum. Nevertheless, the protein

conformational landscape is rugged, where a large fraction of residues may be able to occupy

multiple local minimums of similar energies, resulting in anharmonic electron density

distributions (Kuriyan et al., 1986). More recently, modeling techniques have emerged to model

anharmonic displacements from the underlying diffraction data to reveal the alternative

conformations that the protein can adopt (Burnley et al., 2012; Burnley and Gros, 2013; Forneris

et al., 2014; Fraser et al., 2011; Ginn, 2021; Keedy et al., 2015a; Riley et al., 2021; van Zundert

et al., 2018). However, unlike methods to obtain single conformer models which have become

standardized and widely-applied, methods to efficiently search for and model alternative

conformations require specialized software and techniques that are only used by a relatively

small community.

To address these challenges in obtaining ensemble models via X-ray crystallography, we

recently described an improved data collection pipeline to minimize radiation damage at ambient

temperatures (up to 363K) that can be broadly implemented for different proteins and at other

beamlines (Doukov et al., 2020). Here, we focus on the refinement of X-ray diffraction data

obtained at ambient temperatures to generate multiconformer ensemble models of high quality

and interpretability. Using diffraction datasets of Proteinase K collected at a series of

temperatures (313 to 363 K) above the glass-transition range, we provide a practical roadmap to
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guide multiconformer model refinement and discuss refinement choices and their advantages and

limitations. In addition, in these datasets across temperature, we observed changes in the binding

positions of a Ca2+ ion that is required for catalysis, and we describe the modeling and refinement

of alternative Ca2+ binding configurations and coupled motions of Ca2+-coordinating residues.

Finally, we show the profound impact of temperature on the Proteinase K conformational

ensemble revealed by our models, including changes in conformational heterogeneity (such as

altered rotamer distributions) and compositional heterogeneity (such as increased peptide-bound

states at higher temperatures), emphasizing the need for ambient- and multi-temperature X-ray

crystallography to probe protein conformational landscapes and reveal hidden conformational

features.
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2 Collection of multi-temperature X-ray diffraction data

2.1 Obtaining crystals for X-ray diffraction at and above room temperature

Tritirachium album proteinase K (Sigma, catalog # P2308) was dissolved at pH 7.5 to 30

mg/mL in a 50 mM TRIS (Sigma, T1699) buffer . The protein was crystallized using a hanging

drop setup on a 24 well VDX plate with sealant (Hampton Research, HR3-171) and 22 mm thick

siliconized circle cover slides (Hampton Research, HR3-247) by mixing 2 µL of protein solution

with 2 µL 1.2 M ammonium sulfate, AS (Sigma, A4915) on the coverslip, which was placed

over 1 mL 1.2 M AS in the VDX plate well. Prior to data collection, the aqueous layer around

the crystals was exchanged to an inert Paratone-N oil (Hampton Research; # HR2-643).

Paratone-N oil layer significantly reduces evaporation (Hope, 1990; Pflugrath, 2015; Weik et al.,

2005). Oil-exchanged crystals were mounted on Dual-Thickness MicroLoops LD™ (Mitegen,

SKU:M2-L18SP-200) and MicroGrippers™ loops (Mitegen, SKU:M7-L18SP-300). Excessive

oil was removed, and pins were manually mounted on the BL14-1 goniometer at Stanford

Synchrotron Radiation Lightsource (SSRL) for data collection (Doukov et al., 2020). Additional

information on the crystallization protocol can be found at

https://www.moleculardimensions.com/products/ready-to-grow-crystallization-kit.

2.2 Achieving high-temperature capabilities and temperature control

An Oxford Cryosystems Cryostream 800 model N2 cooler/heater

(https://www.oxcryo.com/single-crystal-diffraction/cryostream-800) with a temperature range of

80-400 K was installed to collect high temperature data at the SSRL beamline 14-1. Because the

physical properties of protein crystals deteriorate over time when exposed to high temperatures,

we adapted the standard nozzle-closing crystal annealer operation to control the crystal exposure

to the heated N2 stream and minimize time at high temperature as follows. After the N2 gas is

heated to the desired (high) temperature, the annealer paddle is placed in the “closed” position to

prevent the gas flow from reaching the sample and heating it during the experimental setup [i.e.,

crystal mounting and centering, closing the experimental hutch, entering the experimental

parameters into the Blu-Ice control software (McPhillips et al., 2002)]. Control kinetic

measurements showed that a J thermocouple placed from room temperature (~293 K) to a 363 K

N2 stream (the highest temperature used in this work) was within 5% of the desired temperature
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in ≤ 10 seconds (not shown) and we used this equilibration time prior to data collection (see

below). For data collection, the annealer paddle is moved to the “open” position via the beamline

control software Blu-Ice and data collection is initiated after a ≤10 seconds temperature

equilibration delay (Doukov et al., 2020).

2.3 Diffraction data collection

Proteinase K crystals with dimensions 0.3-0.4 mm on each side were used for data

collection. Larger crystals are required for the collection of X-ray diffraction data at and above

room temperature to approach cryo resolutions, because higher temperature can lead to more

radiation damage (Garman and Owen, 2006; Garman and Weik, 2017; Nave and Garman, 2005;

Roedig et al., 2016; Southworth-Davies et al., 2007; Warkentin et al., 2011; Warkentin and

Thorne, 2010). To maximize diffraction intensity while minimizing the number of absorbed

photons per unit cell, the beam and crystal size are matched as closely as possible. We routinely

used the highest beam size of 250 µm (horizontal) by 80 µm (vertical). At least 100 degrees of

rotation data were collected as quickly as possible for each crystal to avoid dehydration and any

macroscale defects in the crystal that can happen alongside microscopic radiation damage.

Usually each degree frame was collected for 0.04 – 0.2 seconds with the detector distance and

energy adjusted to achieve highest resolution and high quality dataset (see Table 1, Table S1

from Doukov et al., 2020).

2.4 Data processing

Diffraction data recorded on Eiger 16M PAD detector (Casanas et al., 2016) was

processed with the XDS package (Kabsch, 2010) and the programs Pointless (Evans, 2006) and

Aimless (Evans and Murshudov, 2013), as implemented in the autoxds in-house processing script

at SSRL (https://smb.slac.stanford.edu/facilities/software/xds/). Absorbed doses were calculated

using RADDOSE-3D (Bury et al., 2018; Zeldin et al., 2013).
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Table 1. Data collection and refinement statistics. Statistics for the highest-resolution shell are

shown in parentheses.

313K 333K 343K 353K 363K

PDB id 8SOG 8SQV 8SPL 8SOV 8SOU

Wavelength 0.95369 1.03316 1.03316 1.03316 1.12709

Resolution range
35.37 - 1.13
(1.17 - 1.13)

35.21 - 1.22
(1.264 - 1.22)

35.43 - 1.21
(1.254 - 1.21)

32.47 - 1.291
(1.337 - 1.291)

34.23 - 1.542
(1.597 - 1.542)

Space group P 43 21 2 P 43 21 2 P 43 21 2 P 43 21 2 P 43 21 2

Unit cell
68.403 68.403
103.707 90 90

90

68.068 68.068
103.275 90 90

90

68.403 68.403
104.109 90 90

90

68.361 68.361
104.043 90 90

90

68.458 68.458
104.967 90 90

90

Total reflections
783043
(73918)

512064
(47881)

500061
(44549)

441430
(38293) 74611 (7362)

Unique reflections 92190 (8318) 72388 (5444) 74345 (7072) 62442 (5564) 37357 (3000)

Multiplicity 8.5 (8.1) 7.1 (6.7) 6.7 (6.0) 7.1 (6.3) 2.0 (2.0)

Completeness (%) 93.84 (91.27) 94.21 (76.10) 97.43 (94.91) 98.85 (90.59) 96.51 (81.34)

Mean I/sigma(I) 11.17 (1.13) 11.29 (0.76) 12.72 (0.65) 13.98 (0.87) 6.54 (0.79)

Wilson B-factor 11.22 12.04 11.76 12.89 17.95

Rmerge
0.09638
(1.406) 0.09237 (2.29) 0.07939

(2.461) 0.0782 (2.1) 0.04741
(1.076)

Rmeas 0.1027 (1.503) 0.09991
(2.489) 0.0859 (2.694) 0.08437

(2.289)
0.06705
(1.522)

Rpim
0.03461
(0.5238)

0.03705
(0.9605)

0.03182
(1.071)

0.03117
(0.8963)

0.04741
(1.076)

CC1/2 0.999 (0.519) 0.999 (0.305) 1 (0.339) 0.999 (0.333) 0.999 (0.383)

CC* 1 (0.827) 1 (0.683) 1 (0.711) 1 (0.707) 1 (0.744)

Reflections used in
refinement

86766 (8318) 68444 (5443) 73822 (7072) 61857 (5563) 36237 (3000)

Reflections used for R-free 2000 (191) 2000 (159) 1998 (191) 1999 (180) 1999 (165)

Rwork
0.1194
(0.2494)

0.1310
(0.2538)

0.1709
(0.3742)

0.1306
(0.3122)

0.1721
(0.3369)
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Rfree
0.1515
(0.2877)

0.1696
(0.3032)

0.2076
(0.4366)

0.1651
(0.3540)

0.2226
(0.4128)

CCwork 0.986 (0.768) 0.983 (0.781) 0.979 (0.615) 0.982 (0.671) 0.977 (0.675)

CCfree 0.985 (0.752) 0.973 (0.722) 0.973 (0.515) 0.977 (0.653) 0.973 (0.563)

Total number (N) of
non-hydrogen atoms

8190 7932 7678 6441 5326

N, macromolecules 7919 7725 7513 6250 5204

N, ligands 21 26 21 21 23

N, solvent 250 181 144 170 99

Protein residues 279 279 285 285 285

RMS (bonds) (Å) 0.007 0.023 0.004 0.004 0.002

RMS (angles) (°) 0.98 1.74 0.75 0.70 0.51

Ramachandran favored (%) 96.57 96.55 95.33 96.92 97.26

Ramachandran allowed (%) 3.43 3.45 4.67 3.08 2.05

Ramachandran outliers (%) 0.00 0.00 0.00 0.00 0.68

Rotamer outliers (%) 1.42 0.48 1.63 0.60 0.73

Clashscore 2.90 3.24 5.23 2.61 1.37

Average B-factor (Å2) 12.69 14.33 13.82 15.14 21.52

Average B-factor,
macromolecules (Å2)

11.75 13.65 13.29 14.29 20.90

Average B-factor, ligands
(Å2)

65.06 65.43 70.73 82.62 82.65

Average B-factor, solvent (Å2) 38.19 35.72 33.16 38.05 40.20

3 Single conformer model refinement

Fig. 1 summarizes all refinement steps from the processed reflection data obtained above

to the final multiconformer model. The first part of this process involves obtaining single
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conformer models via standard molecular replacement methods and iterative improvement of the

model, which we briefly describe here.

Fig. 1. Flowchart for the refinement of a multiconformer model from diffraction data. Gray

boxes indicate steps that are automated by refinement softwares such as refmac or phenix, or by

qFit features; Blue boxes indicate steps that need manual interventions (e.g. in Coot).

Abbreviations: ADP (atomic displacement parameter), alt. conf. (alternative conformations), q

(occupancy).

3.1 Molecular replacement

Multiconformer modeling requires high quality data that is free of pathologies. These can

be assessed using tools such as phenix.xtriage that can reveal the presence of twinning and

translational noncrystallographic symmetry (tNCS). There are no pathologies in these high

resolution Proteinase K datasets. Noting this, we proceeded to molecular replacement to obtain

the initial phases (PDB: 3q5g; 100% sequence identity to wild type Proteinase K from

Parengyodontium album). This search model was chosen because its crystallization was done in
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the same solvent as in our experiment. Molecular replacement (MR) was performed using the

program Phaser after adding Rfree labels to the reflection data.

3.2 Initial model building

We used the program Coot to examine the MR-generated model (.pdb) along with the

density maps (.mtz), and manually complete an initial model. First, the C terminal carboxylate

group was added to the model (using the Add OXT at C terminus tool) and the N- and C-terminus

were refined (using Real Space Refine Zone and Regularize Zone). Next, we checked for the

presence of any cis peptide bonds, as they are highly unfavorable (unless involving a proline

residue) and may indicate model errors. One proline cis peptide bond was found for Proteinase K

(as was present in the molecular replacement model) and was determined to be real as the model

agrees with the 2Fo − Fc density map. Prior to refinement and after MR, we deleted all alternative

conformers to obtain a single conformer model that is needed for later steps. We then cleaned up

inorganic molecules (SO4, Ca2+) from the search model that are not present in our datasets. These

molecules with no measured electron densities present were deleted, and other inorganic

molecules were refined and edited such that each has occupancy = 1. Next, we added water

molecules with electron densities above 1.4 rmsd using the Find Waters tool.

Before the refinement cycles, several simple validation metrics available in Coot were

examined, including (1) Ramachandran plot, (2) geometry analysis and (3) rotamer analysis. Any

outliers where atoms do not fit the densities well were refined using Real Space Refine Zone and

Regularize Zone. Water molecules were examined using Check/Delete Waters where problematic

water models were identified. In many cases, water molecules were too close to each other (< 2.4

Å), suggesting partial occupancies. These water pairs were edited so that they are alternative

conformations of the same water molecule, and their occupancies were adjusted so that their

combined occupancies do not exceed 1. Lastly, inorganic and water molecules were renumbered

such that residue numbers are continuous within each chain.

3.3 Iterative model refinement

To improve the model and phases calculated from the model, it is necessary to perform

multiple rounds of automatic refinement followed by manual adjustments until the convergence

of a final single conformer model. In each initial round of automatic refinement (using the

programs refmac and phenix.refine), 5 to 30 cycles of maximum likelihood refinement were
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performed for atomic coordinates, isotropic B-factors1 and occupancies; for final rounds of initial

refinement, given the high resolution of the data, anisotropic B-factors were refined instead of

isotropic. After each round of automatic refinement was completed, we manually inspected the

Fo − Fc and 2Fo − Fc maps and the model in Coot. Difference (Fo − Fc) map peaks above 5𝝈 were

examined in addition to the validation metrics mentioned above; any regions where the model

did not match the 2Fo − Fc map were adjusted. Some of these peaks appeared to result from

unmodeled alternative conformations and were expected to resolve after multiconformer

modeling.

For the Proteinase K datasets, 5-6 iterations were performed until “convergence”. Here,

we note that “convergence” is assessed remembering the adage that “refinement is never

finished, but can be abandoned”. While one can continue the iterative refinement cycles

infinitely, further improvements of model quality and agreement with experimental data will

become lower in magnitude. Practically, we need to navigate these diminishing returns to

determine whether we have arrived at a “final” model. We considered three aspects: (1) whether

the models gave reasonable chemical representations of molecules, judged by the presence of

outliers in torsion angles and geometry; (2) qualitatively, whether the model explains the density

map well, judged mainly by the presence of interpretable Fo − Fc map peaks (above 4~5𝝈) and

how well the 2Fo − Fc map contours around the model; and (3) quantitatively, whether the

measured structure-factor amplitudes |Fobs| match the calculated amplitudes |Fcalc| from the current

model, judged by Rwork and Rfree values (Brünger, 1992; Rupp, 2009). In these final single

conformer models, a few outliers in backbone and sidechain torsion angles persisted, but they are

likely real protein features as the model matches the 2Fo − Fc map shape. For example, D39, a

member of the catalytic triad of Proteinase K, appeared to have unfavorable backbone torsions,

and this outlier is not only observed in our datasets, but also in previously published PDB

models. These regions where intrinsic conformational preferences are potentially perturbed by

surrounding forces may be of interest for further investigation when modeling is complete – as

they may arise from structural constraints or represent features that are evolutionarily-selected

and provide functional benefits. All final single conformer models have Rwork < 0.2, indicating a

reasonably high model quality (Fig. 4B). R values appear to be larger for higher temperature

1 B-factors are also named thermal factors, temperature factors or atomic displacement
parameters (ADP) and used interchangeably.
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datasets, which is expected due to increased thermal motions that cannot be accounted for by

single conformer models.

3.4 Modeling an unknown ligand appearing at high temperatures

Intriguingly, at the Proteinase K active site, some unexplained electron densities

gradually appeared for datasets obtained at higher temperatures. Because Proteinase K binds

peptide substrates and the shape of these densities resemble a peptide chain, we reasoned that a

short peptide may be able to bind at higher temperatures, and the apparent increase in the peptide

density may reflect a shifted equilibrium favoring the bound state (Fig. 2A). While all the

datasets were derived from crystals with the same content, the compositions of bound and

unbound species in ordered parts of the crystals were different and generated different diffraction

data and density maps, reflecting altered compositional heterogeneity across temperature. This

heterogeneity information can be modeled by refining occupancies, as we described below.

To determine the sequence and the conformation of the unknown peptide, we used the

363K dataset which contains the most complete densities for this peptide as a guide. A

poly-alanine chain (chain B) was built based on the overall 2Fo-Fc density shape (using the Add

Terminal Residue tool in Coot), followed by an automatic refinement round (using

phenix.refine). Next, sidechain identities were estimated based on the shape of the 2Fo-Fc
densities that were not explained by the poly-alanine model; the Fo-Fc map further inform

sidechain choices (e.g. an unmodeled valine sidechain would give a signature shape of two

adjacent negative density blobs). In Coot, non-alanine residues were mutated (using Mutate &

Auto Fit), with the final sequence determined to be AAASVK. In the 343 and 353 K datasets, we

modeled the same peptide sequence with roughly the same conformation as modeled in the 363

K dataset while fitting to local densities which are less complete than those in the 363 K dataset.

Since the densities observed for this peptide are not complete, we set occupancies of chain B

residues for all three datasets to a number below 1, which allowed the following automatic

refinement step (using phenix.refine) to refine their partial occupancies (Fig. 2B). Overall, the

occupancies of the peptide residues continue to increase from 343 to 363K, indicating higher

bound species at higher temperatures. To compare the variability of these modeled positions

across datasets, we calculated normalized B-factors by dividing the B-factors by the average

B-factor of all atoms in each dataset. As expected, the peptide residues have higher-than-average

B-factors due to incomplete densities (Fig. 2B). The normalized B-factors are lower for the 363K
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dataset, consistent with higher ordering of the bound species (Fig. 2B). In practice, there is some

degeneracy between occupancy and B-factor refinement, but the refined results here, obtained

from high resolution data, are consistent with greater occupancy and higher order (decreased

B-factors) as temperature increases.

Fig. 2. An unknown peptide is bound at the Proteinase K active site at high temperatures. (A)

2Fo-Fc map and modeled residues for the binding site for datasets showed increasing electron

densities for the bound peptide. Ser224 from the Proteinase K (chain A) is the catalytic serine, its

backbone amide as well as Asn161 sidechain are the “oxyanion hole” hydrogen bond donors that

interact with the carbonyl of the peptide ligand. The unknown peptides (chain B) were modeled

for the 343, 353 and 363K datasets. (B) Occupancies and normalized B-factors for C𝛼 atoms of

the unknown peptide residues.
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4 Multiconformer model refinement

Conformational heterogeneity from diffraction data can be represented by different

metrics and data formats, each with its own limitations. In single conformer models, B-factors

are typically used as a proxy for the degree of flexibility of a group, but they cannot be directly

related to interpretable molecular geometries (e.g. atomic distances, bond angles and rotameric

states) and involve contribution from other factors (e.g. crystallographic disorder) (Kuzmanic et

al., 2014; Sun et al., 2019). Ensemble models generated using X-ray restrained molecular

dynamics (MD) simulations provide 10s to 100s of separate single conformer models, where the

relative population of different conformers reflect their occupancies (Burnley et al., 2012;

Burnley and Gros, 2013; Forneris et al., 2014; Pearce and Gros, 2021; Ploscariu et al., 2021).

However, because of the high parameter-to-observation ratio, discrete conformers modeled for

areas with ambiguous electron densities can be a result of overfitting instead of real

conformational heterogeneity (Burling and Brünger, 1994; Wankowicz SA, 2020). Recent

attempts to represent heterogeneity also include the use of bond-based parameters (bond lengths,

angles and torsion angles) instead of cartesian coordinates; in this scheme, B-factors can be

replaced by parameters describing the variation in torsion angles, which capture the physical

nature of molecular motions more parsimoniously (Ginn, 2021). While promising in reducing the

number of model parameters (and therefore reducing overfitting) and in improving the physical

interpretability of X-ray models, refinement method based on this scheme (Vagabond) is still

under development and has not achieved the accuracies of traditional Cartesian-based models by

conventional Rfree metrics (Ginn, 2021). In addition, both MD-based ensemble models and

bond-based models are incompatible with current softwares for further manual or automatic

refinements and therefore do not allow the fine-tuning of regions and structural features of

interest, especially those detailing compositional heterogeneity that require more sophisticated

refinement methods, which we described below (Section 4.4).

To improve interpretability, accuracy and compatibility while minimizing model

complexity, we chose to refine each Proteinase K dataset into a multiconformer model, using the

program qFit to initially sample and select alternative conformations (Keedy et al., 2015a; Riley

et al., 2021; van den Bedem et al., 2009; van Zundert et al., 2018). In these multiconformer

models, each protein residue has one to five alternative conformers, as needed to explain local

densities; each conformer for a residue is assigned an “altloc” label (A, B, etc), and each atom
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for that conformer has its coordinates, occupancies, and B-factors recorded in a separate line in

the model file. Unlike MD-based ensemble refinement, the approach we took only introduces

additional parameters as needed to explain the experimental data; therefore, these models would

be less likely to overfit. Practically, multiconformer models describe ensemble information in a

single model following the conventional PDB (or mmCIF) format; thus, they are compatible with

all common structural biology tools for further structural refinement and manual adjustment (e.g.

in Coot) (Fig. 1). Both multiconformer models and MD-based ensemble models present

visualization challenges. For example, in PyMol or Chimera, a multiconformer model is viewed

in a single “state”, and the alternative conformations are all visible. For visualization, coloring by

altloc id is helpful in interpreting coupled motions while viewing all modeled conformations. In

contrast, ensemble models contain multiple “states” with whole copies of the entire system.

Scrolling through the states is helpful for visualization as viewing all models contained in the

ensemble is often visually overwhelming. Further improvements in macromolecular visualization

software for analyzing these complex model types will help further enable their use.

4.1 Automatic refinement using qFit

qFit is a Python-based software developed to automatically model and refine alternative

conformers for protein residues and ligand molecules (Keedy et al., 2015a; Riley et al., 2021;

van den Bedem et al., 2009; van Zundert et al., 2018). Here, we used qFit 3.0 to obtain initial

multiconformer models for the Proteinase K datasets. To sample residue conformations, qFit first

performs backbone sampling based on the anisotropic B-factors of the C𝛽 atom (or O atom for

Gly) which define the directionality of its potential motions, moving the atom around the

ellipsoid while adjusting adjacent atoms (within a 5-residue segment) such that the backbone

linkages are closed (Van Den Bedem et al., 2005). To sample sidechain conformations, qFit starts

from the backbone conformations identified in the previous step and samples either around the

C𝛼-C𝛽-C𝛾 bond for planar, aromatic sidechains or around the 𝜒 angles for other sidechains. At

each 𝜒 angle and again once the entire sidechain is built, qFit evaluates the quality of sampled

conformations and removes unnecessary and low occupancy conformers, keeping 1-5 optimal

conformers for each residue whose positions, occupancies and B-factors best fit local densities.

After the optimal fitting of each individual residue, qFit reconnects the entire structural model

taking account of conformer interconnections. Neighboring backbones residues with alternative
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conformations are split into segments, with each segment delimited by a residue with

single-conformer backbone atoms. For each segment, qFit brings all residues to the same number

of alternative conformations to avoid any “floating” conformers caused by missing backbones,

and consistently assigns backbone occupancies and altloc labels (qFit-segment). Next, qFit

determines the coupling of alternative conformers within each segment using a simulated

annealing algorithm, relabeling all alternative conformers so that the coupled conformers do not

clash (qFit-relabel). Details of the qFit algorithm have been described previously (Keedy et al.,

2015a; Riley et al., 2021; van den Bedem et al., 2009; van Zundert et al., 2018) and the

open-source software is available at https://github.com/ExcitedStates/qfit-3.0.

To obtain a multiconformer model from qFit, we need a single conformer model (.pdb)

of reasonably high quality and a composite omit map (.mtz) (Terwilliger et al., 2008). A

composite omit map provides the advantage of reducing model bias. To build such a map, the

asymmetric unit is segmented into contiguous regions, and for the iterative refinement of each

map region, model atoms located within that region are given an occupancy of 0 and therefore do

not bias structure factor calculations; the final “composite” map then combines all refined

segments (Terwilliger et al., 2008). A composite omit map was obtained from the single

conformer model and map refined in section 3 using phenix.composite_omit_map with the

omit-type=refine flag.

To sample conformers, we used the qfit_protein function with -rmsd 0.1 setting, which

removes redundant conformers when they have an all-atom RMSD below 0.1 Å. This RMSD

setting was determined by testing qfit_protein with the default setting (RMSD threshold = 0.01

Å) and increased thresholds of 0.1 Å and 0.2 Å. Qualitatively, the 0.1 Å threshold produced the

best model with a balance between conformation fit and parsimony. Setting an appropriate

RMSD threshold in this step reduces model parameters and helps minimize manual efforts to

prune conformers in later steps.

qfit_protein produced a multiconformer model (multiconformer_model2.pdb) that was

then refined using the qfit_final_refine_xray.sh script. To ensure a parsimonious model, this

refinement protocol involves iterative refinement (using phenix.refine functionalities) of atomic

positions, occupancies and B-factors and removal of low occupancy (< 0.09) conformers until no

such conformers emerge. This step produces a refined multiconformer model and map (with

suffixes _qFit.pdb and _qFit.mtz).
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4.2 Manual pruning and refinement

Manual inspection and refinement of the model and map from 4.1 are required for two

reasons: (1) qFit may produce spurious conformers fitted to densities from noise or the bulk

solvent and (2) additional backbone conformations may need to be added, as the backbone

sampling of qFit 3.0 depends on the anisotropy of C𝛽, which encodes backrub (Davis et al.,

2006), crankshaft (Fadel et al., 1995; Fenwick et al., 2014), and shear (Hallen et al., 2013; Smith

and Kortemme, 2008) motions, but does not report on large backbone rearrangements such as the

180° peptide flips (Keedy et al., 2015a).

In Coot, we inspected each residue to prune any spurious or unnecessary conformers,

including those that do not fit to local densities, those that would cause strain or clashes with

neighboring residues, and those that are too similar. While the criteria for similarity may be

qualitative and ad hoc, we note that both sidechain and backbone atoms need to be compared to

decide if a conformer needs to be pruned. For example, two conformers may have the same

sidechain conformation but obviously different backbone positions. In this case, both sidechain

conformers need to be kept in the model, as the current PDB format will not allow two sets of

backbone atom positions linked to only one sidechain conformer (even though a single backbone

conformation can spawn two side chain conformations). The sidechains in solvent-exposed areas

are more likely to show spurious conformers. In some cases, there were no 2Fo-Fc contours even

at < 0.5 𝜎 around the spurious conformers and also no positive Fo-Fc peaks, suggesting that these

conformers may have been incorrectly fitted to densities resulting from noise or bulk solvent

contributions. Only the conformers supported by the 2Fo-Fc map were kept in the model. In the

meantime, we checked for any backbone conformations that needed to be rebuilt or sidechains

that could be refined to fit the 2Fo-Fc map better, manually adjusting their positions as needed.

4.3 Automatic relabeling of structural segments

Manual pruning and refinement are essential to correct and improve the model, but also

introduce model inconsistencies that need to be resolved. First, because some conformers were

deleted, the combined occupancies of the remaining conformers of a residue did not sum to one.

Second, deletion of conformers resulted in breaks in peptide linkages. To redistribute

occupancies and reconnect the peptide, we re-ran qfit_protein with the flag –only-segment.With

this option, qFit does not re-sample and score residue conformers, but re-distributes the
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occupancies of the remaining conformations and performs the segmentation and labeling step as

described in 4.1 (qFit-segment and qFit-relabel). This step is followed by another automatic

refinement cycle using qFit_segment_refine.

This procedure generates connected backbones with consistent occupancies for coupled

neighboring conformers, but at the cost of increased number of parameters, as it requires

bringing in duplicate conformers. For example, if residue N has four alternative backbone

conformations (A, B, C, D) and residue N+1 has two alternative conformations (A, B), this

procedure will create C and D conformers for residue N+1 by duplicating its A and B

conformers. This duplication may continue until we reach the end of a segment, so that all

backbones have the same number of alternative conformations (A, B, C, D) and are therefore

properly connected. The alternative to the duplication of conformers is to have “floating”

backbone atoms, e.g. with residue N conformers C and D having no connection from the

backbone carbonyl to the next alpha carbon. Ideally, we would like to have a nested model

format where the C and D conformations can be “children” of the A and B conformations, but

currently, neither the PDB nor CIF format currently allow for that representation (Hancock et al.,

2022; Pearce et al., 2017; Vallat et al., 2023).

4.4 Modeling coupled motions

To finetune the model for regions of interest where coupled motions may occur, we used

a constrained group occupancy refinement approach, which we illustrate below using the

example of the Proteinase K Ca2+ binding site. This binding site was identified in previous

structural studies (Betzel et al., 1988), where a Ca2+ ion is coordinated by the sidechain of D200,

the backbone O atoms of V177 and P175, and surrounding water molecules (Fig. 3A).

Nevertheless, our diffraction data revealed a more complex picture for Ca2+ interactions in this

binding site: the 2Fo-Fc map does not clearly indicate one unique position for the Ca2+; instead,

for datasets obtained at 313 to 353K, there are four spherical densities within this binding site,

and two of these spheres are very close together, with their merged densities forming a dumbbell

shape (Fig. 3C). Our density map and initial multiconformer model suggested that the Ca2+ can

occupy these alternative positions in the binding site, for three reasons. First, the commonly

modeled position where Ca2+ forms a bivalent interaction with the D200 sidechain lies within the

overlapping dumbbell-shaped density, suggesting alternative position instead of a coordinating
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water molecule, as the interaction distance would be too close (<2 Å) and highly unfavorable

(Fig. 3C). Second, the alternative conformers modeled for nearby residues such as D200 and

V177 include those that orient towards positions other than the commonly modeled one,

suggesting that these residues can stabilize Ca2+ when it occupies these other positions (Fig. 3C).

Lastly, in the 363K dataset, densities for the commonly modeled position disappeared and the

dumbbell-shaped density shrinked to an elliptical shape, suggesting that alternative

conformations are favored at high temperatures (Fig. 3C, D). To unambiguously determine

possible positions of Ca2+, future experiments can collect diffraction data at longer wavelengths

to detect Ca2+ anomalous signals; here, we considered all possible alternative configurations as

suggested by the electron density maps.

To model alternative positions of Ca2+ and how the interacting residues move

accordingly, we manually set up alternative conformers of Ca2+ and its surrounding protein

residues and water molecules as “groups” in Coot by creating multiple copies of the same atoms

and assigning the same altloc label to the atoms in the same configuration (Fig. 3B). Then, we

used phenix.refine to perform automatic refinement with group occupancy constraints that will

produce consistent occupancies for chemical entities within a group.

To enumerate all possible Ca2+ and binding site residue configurations, we considered

each of the four spherical densities as potential alternative positions for Ca2+, and in each case

assigning the other density blobs as water molecules. Because only one atom can occupy the

dumb-bell region at a time, we modeled one Ca2+ and two water molecules for each alternative

conformation. In total, there are 6 different configurations for the Ca2+ and the two coordinating

waters as a group, as illustrated in Fig. 3C; we therefore created alternative conformations A

through F for these molecules accordingly. Next, we identified protein residues that showed

correlated motions with these different Ca2+ positions, which include D200, V177 and V198

(Fig. 3A, B). We also modeled 6 alternative conformers (A through F) for each of these residues,

and their alternative conformer labels were reassigned so that each conformer was in the correct

group. For example, the conformer of D200 that is the closest to the A conformer of Ca2+ was

labeled “A”, et cetera. For the 363 K dataset, the dumbbell-shaped density observed for other

datasets diminished into an eclipse with no clear indication for two separate configurations (Fig.

3C); therefore, duplicate configurations (A, B and E) were removed.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2023.05.05.539620doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539620
http://creativecommons.org/licenses/by/4.0/


To model the positions, B-factors and occupancies of these chemical entities as a group,

we included group occupancies refinement strategies in our next cycle of phenix.refine, assigning

each alternative configuration as a constrained group (e.g. group A was the A conformers of

Ca2+, waters, D200, V177 and V198). Using this approach, all atoms in a group are refined to the

same occupancy and each chemical entity will have a total occupancy of 1 summed over all its

alternative conformers. The positions and B-factors were also allowed to further refine.

Nevertheless, occupancy refinement would be performed for the entire model, and some

alternative conformers of protein residues outside the Ca2+ binding site may drop below 0.09

again. Therefore, we created chimeric models that merged the pre-grouped model (from 4.3)

with the updated positions, B-factors and occupancies for grouped atoms in the grouped and

refined model obtained here. Additional refinement runs for this chimeric model were then

performed with fixed occupancies, allowing only the atomic positions and B-factors to fluctuate.

Increasing temperatures favor alternative Ca2+ binding configurations, as suggested by the

refined group occupancies: at lower temperatures, Ca2+ mainly occupies the dumbbell region

(configurations A and C); as temperature increases, the occupancy for Ca2+ at the more distal

position (configurations B and D) increases (Fig. 3D). In addition, the elliptical instead of

dumbbell shape for the center density at 363K suggests less distinction and therefore higher

mobility for exchanging between the A and C sites (Fig. 3C).
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Fig 3.Modeling and refinement of the Proteinase K Ca2+ binding site. (A) Four possible

positions for Ca2+ as suggested by the 2Fo-Fc maps; each position appears to be stabilized by 5 to

7 metal-coordinating interactions with surrounding water molecules or protein residues. Position

1 corresponds to the Ca2+ position that is typically modeled. Protein residues that showed

alternative conformers orienting towards different Ca2+ positions are indicated by gray boxes;

these residues were included in the group occupancy refinement. (B) All possible configurations

(conformers A through F) for the Ca2+ and water molecules. (C) 2Fo-Fc map and models for the

Ca2+ binding site, including all alternative conformations for each model. Water molecules are
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shown as blue spheres, and Ca2+ as red spheres. (D) Changes in the refined occupancies of each

alternative conformation across temperature.

Overall, the final multiconformer models showed decreased R factors across all datasets

(Fig. 4), indicating improved fit of the models to the underlying data after multiconformer

refinement; in particular, the decrease in the cross-validation term Rfree suggests that the

improved accuracy does not arise from overfitting (Fig. 4A).

Fig 4. Rfree (A) and Rwork (B) for the final single conformer v. multiconformer models indicate

improved model accuracy after multiconformer refinement.
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5 Identifying temperature-dependent conformational changes

Multiconformer models provide rich information for protein conformational ensembles,

but it can be difficult to extract conformational changes that are significant and relevant to

functional aspects of interest. This difficulty arises from the fact that each residue may have a

different number of alternative conformers modeled for different datasets, and each alternative

conformer has their own modeled positions, occupancies and B-factors, preventing a matched

statistical comparison across datasets. Here, we used the program Ringer (Lang et al., 2010) to

guide our search for interesting conformational changes and identified widespread changes of the

proteinase K ensemble in response to temperature. The approach that we describe here can also

be extended to study other structural perturbations, such as ligand binding and mutations.

5.1 Ringer analysis

The Ringer program systematically samples electron densities around sidechain rotamers,

allowing for the detection of low-occupancy sidechain conformational states and the comparison

of sidechain states across datasets at different temperatures. Ringer analysis complements

multiconformer models, as it provides torsional electron density profiles for all sidechains at 5 or

10° intervals that can be systematically compared across datasets. Nevertheless, Ringer can only

sample electron densities around sidechains based on backbone positions from a single

conformer model; thus, the resulting profile reflects a mixture of sidechain and backbone

motions. For example, a broad Ringer peak may result from a highly flexible sidechain attached

to constrained backbone atoms, or the opposite, or a moderate level of flexibility from both.

Therefore, to distinguish between these possibilities, one must return to the multiconformer

model and electron density maps.

Ringer can be accessed via phenix using the mmtbx.ringer command with a model and a

single conformer model supplied (mmtbx.ringer model.pdb map.mtz). We used the single

conformer model from 3.4 and the final map after multiconformer refinement from 4.4, as the

final map provides more accurate electron densities. This command produces a table of electron

densities for each residue-rotamer in the model from 0 to 359° at specified intervals (default 5°).

The raw Ringer profiles are helpful for the interpretation of weak densities and further

refinement of the multiconformer model. Crudely, any rotamer angles at ≥ 0.3 𝜎 are likely to be
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conformational features rather than noise from hydrogens (Lang et al., 2010). One may return to

the multiconformer model to refine particular areas as informed by Ringer.

For the systematic comparison of rotamers dynamics across datasets, we need to

normalize 𝜎 values (eq. 1), as the scale of electron density values can vary across datasets and

obscure changes of 𝜎.

Normalized 𝜎 = (𝜎 – 𝜎min)/(𝜎max– 𝜎min) (eq. 1)

The normalized Ringer profiles revealed diverse patterns of sidechain conformational

changes across temperatures. In the simplest scenario, we would expect high temperatures to

favor higher-entropy states, and the distributions of sidechain rotamer angles are expected to

broaden. One example of this pattern is the 𝜒1 of Glu43, as indicated by the broader shoulders of

the 363K Ringer profile and its more dispersed 2Fo-Fc densities around the sidechain (Fig. 5A).

In the second case, we observed the emergence of an alternative sidechain rotamer at higher

temperatures, such as for the 𝜒1 of the catalytic residue Ser224 (Fig. 5A). Unexpectedly, we also

observed the disappearance of rotamer states at high temperatures, such as for the 𝜒1 of Ser63,

emphasizing the idiosyncrasy of temperature effects on individual rotamers, residues and

regions, rather than a universally higher flexibility (Fig. 5A). Lastly, there are also highly

positioned residues such as Asn163 whose 𝜒1 profiles do not change across temperature (Fig.

5A).

To further quantify the similarities and differences between Ringer profiles, we calculated

Pearson correlation coefficients (PCC, or Pearson’s r) using the scipy.stats.pearsonr function of

the SciPy package (Virtanen et al., 2020). Across sidechain rotamers of the entire Proteinase K

structure, PCC values decrease when comparing the 313K model to higher temperature models,

and are especially low for the 363K dataset (Fig. 5B). For the comparison of 313K versus 363K

dataset, we identified 86 rotamers with PCC ≤ 0.9 among a total of 410 rotamers, suggesting

widespread conformational changes in response to higher temperatures. As all datasets here were

collected above the glass transition, these changes are mostly subtle, and we would expect more

significant changes for comparisons of datasets below and above glass transition (Fraser et al.,

2011; Halle, 2004; Keedy et al., 2014; Rasmussen et al., 1992; Tilton et al., 1992).
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Fig. 5. Temperature-dependent rotamer changes in Proteinase K. (A) Examples for how rotamers

change across temperatures and their Ringer profiles. 2Fo-Fc maps are contoured at 1𝜎. (B)

Distributions of PCC for comparisons of all rotamers across datasets.
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6 Summary and Conclusions

Conformational ensembles, rather than static structures, are needed to deepen our

understanding of protein functions and ultimately reach the ability to derive quantitative,

predictive models for protein functions (Austin et al., 1975; Benkovic et al., 2008; Benkovic and

Hammes-Schiffer, 2003; Frauenfelder et al., 1991, 1988; Hammes et al., 2011; Mokhtari et al.,

2021) . Nevertheless, X-ray derived ensemble data is limited due to experimental challenges

[which we addressed in (Doukov et al., 2020)] and the requirement for specialized refinement

approaches, which are not easily accessible. Here, we used a series of Proteinase K datasets

collected at increasing temperatures to provide a practical and detailed tutorial for the refinement

of multi-conformer models and correlated motions within these models, and we discussed the

rationale behind our refinement choices and their advantages and limitations. We note that many

of our refinement choices are limited by the PDB format and interpretations by refinement

softwares. In particular, multiconformer models need to account for alternative conformations for

each individual residue as well as the connections between conformers across the protein

backbone, and this multidimensional information cannot be cleanly represented by the “flat”

PDB format without duplicated model parameters. The mmCIF format could potentially

represent multiconformer connectivities and interrelationships because of its more flexible

formatting. Such future efforts will need to evolve with projects that have high compositional

[e.g. fragment screening (Krojer et al., 2020; Weiss et al., 2022)] and conformational [e.g.

time-resolved serial femtosecond crystallography (Oda et al., 2021; Schmidt, 2021)]

heterogeneity. Meeting these challenges will also help build molecular models compatible with

increasingly complex 3D classification and heterogeneous map reconstruction methods in

cryo-EM (Zhong et al., 2021). In addition, we encountered issues during refinement and PDB

deposition because many widely-used tools (e.g. MolProbity and Reduce) are not optimized for

multiconformer models. We suggest that future efforts in improving the PDB/mmCIF format and

structural biology tools to accommodate ensemble features will simplify the process of obtaining

ensemble models and allow the database of conformational ensembles to grow.

Proteinase K appears to undergo widespread conformational changes across temperature.

These observed changes are potentially linked to its stability, binding and catalysis, such as the

increased occupancies of the bound peptide ligand, changes in Ca2+ binding configurations, and

altered distributions of rotameric angles for catalytic residues. While qFit automates the
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sampling of alternative conformations and provides a preliminary model, we emphasize that

additional finetuning is needed to improve the accuracy of the model and to extract interesting

local changes. For example, we showed that the Ca2+ binding site can be modeled by 6 different

alternative configurations and determined how the occupancies of each change across

temperatures. This strategy may be extended to model other coupled motions of interest, e.g. to

determine if the motions of the active site groups are constrained or facilitated by surrounding

residues, or if the binding of an allosteric ligand shifts the equilibrium of conformational states of

a network of residues that move together. We expect that these modeled changes will lead to

hypotheses that can be tested by additional experiments – for example, by introducing structural

perturbations that change the magnitude or direction of these motions or disrupt their couplings.
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