
PNAS  2023  Vol. 120  No. 29  e2219074120� https://doi.org/10.1073/pnas.2219074120   1 of 11

RESEARCH ARTICLE | 

Significance

Transition state analogs (TSAs) 
resemble fleeting high-energy 
transition states and have been 
used to inhibit enzymes in nature 
and medicine, to learn about 
enzyme active-site features, and 
to design and select new 
enzymes. While TSAs mimic 
transition states, they differ from 
actual TSs, and we exploit these 
differences here. Systematic TSA 
affinity measurements for 1,004 
mutants of PafA (a model 
phosphatase enzyme) revealed 
effects in and around the active 
site that mirror their effects on 
catalysis, but TSA-binding and 
deleterious catalytic effects 
diverge more distally. These 
observations suggest that 
residues throughout an enzyme 
shape its conformational 
landscape on the tenth-Ångström 
scale to optimize the active site 
for catalysis, rendering allostery 
more evolvable in nature but 
likely complicating enzyme 
design.
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Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 
9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout 
the alkaline phosphatase PafA on binding affinity for two transition state analogs 
(TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition 
state complementary, mutations to active site and active-site-contacting residues had 
highly similar impacts on catalysis and TSA binding. Unexpectedly, most muta-
tions to more distal residues that reduced catalysis had little or no impact on TSA 
binding and many even increased tungstate affinity. These disparate effects can be 
accounted for by a model in which distal mutations alter the enzyme’s conforma-
tional landscape, increasing the occupancy of microstates that are catalytically less 
effective but better able to accommodate larger transition state analogs. In support 
of this ensemble model, glycine substitutions (rather than valine) were more likely 
to increase tungstate affinity (but not more likely to impact catalysis), presumably 
due to increased conformational flexibility that allows previously disfavored micro-
states to increase in occupancy. These results indicate that residues throughout an 
enzyme provide specificity for the transition state and discriminate against analogs 
that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival 
the most powerful natural enzymes will likely require consideration of distal residues 
that shape the enzyme’s conformational landscape and fine-tune active-site residues. 
Biologically, the evolution of extensive communication between the active site and 
remote residues to aid catalysis may have provided the foundation for allostery to 
make it a highly evolvable trait.

enzyme catalysis | transition state specificity | transition state analogs |  
high-throughput biochemistry | conformational ensembles

Transition state analogs (TSAs) have been used by nature to control enzyme function  
(1, 2), in research to provide insights into the properties of enzyme active sites and enzy-
matic catalysis (3–6), and in medicine to provide highly effective drugs (6–10). Catalysis 
can be defined as preferential stabilization of a transition state over a reaction’s ground 
state (3, 11–16). Thus, it is expected—and has been observed—that compounds with 
electrostatic and geometric features resembling the transition state but not the ground 
state bind more strongly to enzymes than substrates or standard inhibitors. For example, 
lactone and sugar analogs serve as TSAs of glycosidases by mimicking the planar geometry 
and positive charge accumulation at the reactive carbon in the oxycarbenium-like transition 
state (17, 18); for serine proteases, TSAs mimic the charge and tetrahedral geometry of 
their transition states upon forming adducts with the nucleophilic serine (19). In addition, 
many strong inhibitors are bisubstrate analogs, mimicking the partial bond formed in the 
transition state and taking advantage of the lower entropic cost in binding a single tran-
sition state-like species relative to the two substrates independently (20). Despite these 
many successes, it has also been widely recognized that no transition state analog is per-
fect—none can exactly replicate the geometry and electronic distribution of a species with 
partial bonds that exists at the peak of the reaction pathway (21–23).

Efforts to use TSAs to develop artificial enzymes highlight their strengths and weak-
nesses. The selection of antibodies with catalytic activity via TSA binding—so-called 
“catalytic antibodies”—demonstrated the fundamental concept of transition state com-
plementarity of enzyme active sites (24, 25). Nevertheless, the catalytic power of antibodies 
falls well short of naturally evolved enzymes (22, 26). These shortcomings led to specu-
lation about what may be missing in these proteins and their design. These observations, 
and the general inability to design de novo enzymes that rival the rate enhancements of D
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the most proficient natural enzymes, further highlights that there 
are gaps in or limits to our understanding of enzyme catalysis (27).

Enzyme research has understandably focused on the interactions 
made directly with substrates and transition states. Nevertheless, 
it is common to find residues remote from the active site that 
substantially influence enzyme activity (28–31). Despite much 
discussion about the roles of these remote residues and of the overall 
folded protein (32–49), our knowledge of the mechanism by which 
they impact catalysis is limited, at least in part due to a dearth of 
data. We recently developed high-throughput microfluidic enzyme 
kinetics (HT-MEK), an approach that allows parallel expression, 
purification and quantitative kinetic and thermodynamic assays 
for multiple substrates, concentrations, and inhibitors for ~1,500 
enzyme variants in parallel. In prior work, we generated a mutant 
library comprised of systematic glycine and valine substitutions 
(with native glycine and valine residues mutated to alanine) within 
PafA, a phosphomonoesterase of the alkaline phosphatase super-
family, and applied HT-MEK to study these 1,036 mutants. 
Glycine and valine were chosen because they have widely different 
side-chain properties and provide distinct biochemical perturba-
tions to increase the chance of observed functional effects from 
perturbations at individual positions. Indeed, functional effects at 
positions beyond the active site were typically observed for one or 
the other mutation but not both. In total, substitutions at 161 of 
PafA’s 526 residues significantly reduced catalysis, including many 
distal residues (50).

Here, we systematically interrogated the effects of these muta-
tions on binding of the TSAs vanadate and tungstate (51, 52). We 

explored active-site specificity for the reaction’s transition state 
versus the TSAs using catalysis of the substrate methyl phosphate 
(MeP; kcat/KM) for which the chemical step of catalysis is rate lim-
iting (51, 53). Our results revealed extensive specificity effects from 
mutations remote from the active site, including catalytically del-
eterious mutations that increase TSA binding. These results suggest 
that residues throughout the enzyme are involved in precise posi-
tioning at the active site. This complex connectivity presents a 
challenge in understanding and engineering enzymes, but, from a 
practical perspective, a potential pathway to more effectively opti-
mize enzymes for promiscuous reactions and from an evolutionary 
perspective, a potential pathway for the widespread emergence of 
allostery.

Results

PafA and other members of the alkaline phosphatase superfamily 
are extraordinary catalysts, providing rate enhancements of up to 
1027-fold for the hydrolysis of phosphate monoester substrates, for-
mally equivalent to a transition state stabilization of ~37 kcal/mol 
(51, 54). PafA is a 526-residue enzyme with a Rossmann fold and 
an active site comprised of a bimetallo Zn2+ core, a nucleophilic 
threonine residue (T79), and three additional residues (K162, R164, 
and N100); these three residues and the amide backbone of T79 
contact the phosphoryl oxygen atoms of the substrate (Fig. 1 A and 
B). Following substrate binding, hydrolysis proceeds through 
nucleophilic attack by T79 to form a covalent phosphoryl enzyme 
intermediate (E-P) that is subsequently hydrolyzed by an attacking 

A B

C D

Fig. 1. PafA catalysis and binding. (A) PafA active site and catalytic cycle showing helices containing the nucleophilic threonine (green) and active-site residues 
K162 and R164 (orange). (B–D) Schematics of ground state (B), transition state (C), and transition state analog-bound state (D). The semitransparent plane contains 
the equatorial oxygen atoms expected in the trigonal bipyramidal geometry of the transition state and of bound analogs.D
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zinc-liganded hydroxide ion to generate inorganic phosphate (Pi), 
which is released from the enzyme (Fig. 1A). During both chemical 
steps, one Zn2+ ion within the bimetallo core activates the nucleo-
phile and the other stabilizes the developing negative charge on the 
leaving group (Fig. 1B). Mutations of the substrate-contacting res-
idues yield much larger deleterious effects on catalysis than on bind-
ing Pi (the reaction product and substrate for the reverse reaction), 
indicating that these side chains preferentially stabilize the transition 
state (51).

Vanadate and tungstate bind strongly to many phosphoryl 
transfer enzymes and adopt trigonal bipyramidal geometries that 
mimic the reaction’s transition state (Fig. 1 C and D) (52, 55–60). 
Consistent with expected TSA behavior, vanadate and tungstate 

affinity correlate closely with catalysis for 27 combinations of 
active-site mutations in Escherichia coli alkaline phosphatase and 
for four ablative active site mutations in PafA (51, 52). Nevertheless, 
crystal structures of these molecules in isolation and bound to 
proteins reveal differences in bond lengths and bond angles (see 
below). Here, we exploit transition state mimicry and these subtle 
differences to learn more about molecular specificity in active sites 
and the protein features that are responsible.

HT-MEK Reliably Measures Transition State Analog–Binding 
Affinities. To determine the impact of mutations throughout the 
enzyme on transition state analog-binding affinity and specificity, 
we turned to HT-MEK (50). In HT-MEK, reaction chambers 

Fig. 2. HT-MEK experimental pipeline and TSA-binding measurements for PafA mutant library. (A) Device photo (A, Left) and schematic showing experimental 
measurements of inhibition. (B) Representative vanadate inhibition curves. Thin lines indicate per-chamber curve fits; thick lines show fit behavior predicted by 
median Ki for WT (black), H83G (cyan), and A165V mutants (red); for WT, 10 of 64 total measurements are shown for clarity. (C) Comparison between dissociation 
constants (KDs) measured on- and off-chip for vanadate, tungstate, and Pi. Arrows denote Kd limits (see below and Materials and Methods). These limits were not 
used to calculate the correlation coefficient. (D and E) Volcano plots of vanadate (D) and tungstate (E) association constants (Ka

mutant/Ka
WT) for PafA glycine and 

valine scanning libraries; marker size indicates the number of replicates and limits are of affinity effects. (F) Comparison of vanadate affinity effects (Ka
mutant/Ka

WT) 
and catalytic effects (kcat/KM, mutant/kcat/KM, WT) for PafA mutants. (G) Comparison of tungstate affinity effects (Ka

mutant/Ka
WT) and catalytic effects. In F and G, the points 

are colored by the statistical significance of each mutant’s catalytic and affinity effect using statistical tests comparing the effects of each mutant against the WT 
PafA measurements: mutants that do not differ significantly in catalysis from WT are shown in gray; mutants with significant catalytic defects are colored based 
on vanadate (F) or tungstate affinity (G) effect (yellow, increase in affinity; purple, decrease in affinity; red, WT-like affinity). The dashed line is the identity line 
and the solid line the best-fit correlation line. Vertical arrows denote upper and lower Ka limits, affinities too weak to be measured using the range of inhibitor 
concentrations used or stronger than measured due to low KM values, respectively. Left arrows denote upper limits for mutants with catalytic activities below 
the dynamic range of the assay, and right arrows denote lower limits for mutants with MeP KM values below the lowest substrate concentration used (Materials 
and Methods).D
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within valved microfluidic devices (Fig. 2 A, Left) are programmed 
with specific enzyme mutants by aligning devices to printed arrays 
of a library of plasmids encoding C-terminally eGFP-tagged PafA 
mutants. Following alignment, cell-free expression reagents are 
introduced into all chambers to express the mutants in parallel. 
After expression, eGFP-tagged mutants are recruited to anti-eGFP-
patterned surfaces within each chamber to purify the enzymes in 
parallel (Fig. 2 A, Middle); measured eGFP fluorescence intensities 
along with an eGFP calibration curve report on the concentration 
of immobilized mutant enzyme. After immobilization, integrated 
valves that protect device surfaces make it possible to start and 
stop reactions as well as introduce fresh reagents without loss of 
surface-attached enzyme. To quantify TSA binding, we iteratively 
introduced the fluorogenic substrate 7-(dihydroxyphosphoryloxyl)
coumarin-4-acetic acid [cMUP; (50)] in the presence of increasing 
TSA concentrations (7 to 13 concentrations ranging from 0.1 µM 
to 1 mM) and measured initial reaction rates via time-resolved 
fluorescence imaging (Fig. 2 A, Right). Increasing concentrations of 
vanadate and tungstate inhibited catalysis as expected, with behavior 
well fit by a competitive inhibition model (Fig. 2B and see below). 
Dissociation constants for vanadate, tungstate, and Pi obtained from 
these data for WT PafA and four active-site mutants on-chip agreed 
well with values from traditional measurements (r2 = 0.95; Fig. 2C), 
as is also the case for kinetic constants (50, 51).

Systematic HT-MEK Measurements Reveal Hundreds of Mutations 
That Impact Transition State Analog Binding. Over 17 experiments, 
we determined inhibition constants or limits for 1,004 of the 1,036 
PafA glycine and valine variants in the presence of vanadate or 
tungstate, corresponding to the measurement of 1,944 equilibrium 

constants, with the remaining variants too catalytically impaired to 
quantify inhibition. We report inhibition curves for each mutant 
in each experiment in per-experiment and per-mutant reports in 
our Open Science Foundation (OSF) data repository (https://
osf.io/k8uer/), corresponding to a dataset of 9,278 inhibition 
curves. The high number of replicate measurements obtained 
via HT-MEK (naverage = 4.5; SI Appendix, Fig. S1) allowed us to 
resolve statistically significant affinity differences of < twofold via 
bootstrap hypothesis testing, in which we compare the distribution 
of measured inhibition constants for each mutant to the WT PafA 
distribution (a significance threshold of P < 0.01 is used; Fig. 2D and 
SI Appendix, Fig. S2) (50, 61). Even with this high sensitivity, ~90% 
of the mutants showed wild-type-like vanadate inhibition (897/979 
mutants), with 82 mutants decreasing affinity and one increasing 
affinity (Fig. 2E and SI Appendix, Fig. S2). Tungstate measurements 
revealed similar numbers of mutants with decreased affinity (76/964 
mutants) (P < 0.01; Fig. 2E and SI Appendix, Fig. S3). Unexpectedly 
though, a large number of mutants (155) significantly enhanced 
tungstate binding (Fig. 2E). Off-chip measurements for 8 distal 
mutants that either increased or decreased tungstate affinity on-chip 
measurements strongly supported the on-chip results (r2 = 0.81 & 
RMSD of 1.6-fold); SI Appendix, Fig. S4).

Many Mutations Reduce Catalysis without Impacting Transition 
State Analog Binding. Traditionally, a compound is considered 
a good TSA if changes to the enzyme (e.g., via mutation) or the 
analog (e.g., via chemical modification) yield equal magnitude 
changes in binding and catalysis (52, 58). Active-site mutants of 
PafA and another alkaline phosphatase family member, E. coli 
alkaline phosphatase, give strong correlations between vanadate or 

Fig. 3. Effects of mutations on vanadate binding and catalysis as a function of distance from the PafA active site. (A) Comparison of catalytic and vanadate 
affinity effects for PafA active-site mutants, measured previously (51). (B–D) Comparison of catalytic (P < 0.05) and vanadate affinity effects (P < 0.01) for mutants 
of residues in the (B) second shell, (C) third shell, and (D) more distal shells. Labeled points in B denote mutants with significant catalytic but not affinity effects. 
Colored and gray points denote statistically significant and insignificant effects, respectively, based on statistical tests (bootstrap hypothesis tests) comparing 
each mutant distribution to the WT PafA distribution. Left arrows denote upper limits for mutants with catalytic activities below the dynamic range of the assay, 
right arrows denote lower limits for mutants with MeP KM values below the lowest substrate concentration used, and vertical arrows denote upper and lower 
vanadate Ka limits (Materials and Methods). (E) PafA structure with spheres shown for residues with significantly deleterious catalytic and vanadate affinity effects 
when mutated to either glycine or valine (35 of 520 measurable residues). (F) PafA structure with spheres shown for residues with significant catalytic but not 
significant affinity effects (125 of 520 measurable residues). Catalytic data are from reference (50).D
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tungstate binding and catalysis [(51, 52) & see below]. Indeed, 50 
mutations that reduced kcat/KM of MeP hydrolysis [a substrate for 
which chemistry is rate-limiting (51, 53)] also reduced vanadate 
and/or tungstate affinity (Fig.  2 F and G). Yet an additional 
123 catalytically deleterious PafA mutations (51, 53) did not 
significantly weaken binding of either TSA (Fig. 2 F and G).

This result is not a consequence of differences in statistical res-
olution between experiments; indeed, HT-MEK-binding measure-
ments have higher accuracy than HT-MEK kinetic measurements 
(due to errors in determining enzyme concentration that affect 
kinetic but not inhibition constants), so this differential is likely 
still larger (50). Furthermore, for mutations giving the largest del-
eterious catalytic effects (>10-fold), some yield similar reductions 
in vanadate and tungstate binding, but many yield little or no 
reduction in binding (Fig. 2 F and G). Below, we evaluate which 
residues and substitutions give rise to equal effects and which give 
rise to disparate effects, and we develop models to account for these 
results.

Larger Deleterious Effects on Catalysis Compared to Vanadate 
Binding from Mutations Distal to the Active Site. Prior mutations 
of active-site residues measured off-chip gave nearly equal (within 
twofold to threefold) effects on catalysis and vanadate binding, 
consistent with expectations for removing interactions with a TSA 
that contribute to catalysis (Fig. 3A) (51). The sole exception is 
K162A, which gave a >106-fold deleterious catalytic effect but a 
much smaller effect on vanadate binding (~102). Moving out from 
the active site to residues that directly contact the catalytic residues 
or zinc ions (“second shell” residues), we were able to obtain data 
for 39 of the 50 total possible mutations. Of these 39 mutants, 17 

were compromised in catalysis, with most having similar impacts 
on catalysis and affinity; indeed only four of the 39 measured 
gave larger deleterious impacts on catalysis by threefold or more 
(D38G, G99V, Y306G, and N399V) (Fig. 3B and SI Appendix, 
Fig. S5). For the second-shell mutants to the six catalytic Zn2+ 
ligands (12 mutations total), six had measurable catalytic activity 
and only one, D38G, gave different deleterious effects on catalysis 
and vanadate binding (Fig. 3B, squares and SI Appendix, Table S1).

Moving further from the active site, we observed decreasing 
congruence between catalytic and vanadate-binding effects. In the 
third shell, few mutations gave similar effects (Fig. 3C, purple), 
with the majority affecting catalysis more than vanadate binding; 
beyond the third shell (shells 4 to 8) there was essentially no 
correlation, even for distal mutants with large detrimental catalytic 
effects (Fig. 3D and SI Appendix, Fig. S6 and Tables S2 and S3). 
This loss of congruence between catalytic and vanadate binding 
effects with increasing distance from the active site is also apparent 
from the decreasing slopes of correlation lines and decreasing cor-
relation coefficients in Fig. 3 A–D. Projecting these results onto 
the PafA structure provides a striking visualization of the dimin-
ishing correlation of catalytic and TSA-binding effects with dis-
tance from the active site (Fig. 3 E and F).

Increased Tungstate Binding from Many Distal Mutations. We 
carried out the same analyses as above for vanadate with the second 
TSA, tungstate. Active-site mutants again gave similar effects on 
catalysis and tungstate binding, but with enhanced agreement for 
the K162A mutant relative to that observed for vanadate (Fig. 4A) 
(51). Also as for vanadate, tungstate binding and deleterious catalytic 
effects were strongly correlated for second-shell mutants, with only 

Fig. 4. Effects of mutations throughout the PafA structure on tungstate binding and catalysis as a function of distance from the PafA active site. (A) Comparison 
of catalytic and tungstate affinity effects of PafA active-site mutants, measured previously (51). (B–D) Comparison of catalytic and tungstate affinity effects for 
mutants of residues in the (B) second shell, (C) third shell, and (D) more distal shells. Colored and gray points denote statistically significant and insignificant 
effects, respectively, based on statistical tests (bootstrap hypothesis tests) comparing each mutant to WT PafA. Left arrows denote upper limits for mutants 
with catalytic activities below the dynamic range of the assay, right arrows denote lower limits for mutants with MeP KM values below the lowest substrate 
concentration used, and vertical arrows denote upper and lower tungstate Ka limits (Materials and Methods). (E) PafA structure showing locations of residues 
with significant catalytic and either deleterious (28 of 522 measurable residues) or enhanced (57 of 522 residues) tungstate affinity effects when mutated to 
either glycine or valine. (F) PafA structure showing positions in PafA that have significant catalytic effects but do not have significant affinity effects (80 of 522 
residues). Catalytic data are from reference (50).D
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a small number of outliers (Fig. 4B), and the correlation decreased 
substantially for third-shell residues and beyond (Fig. 4 C and D 
and SI Appendix, Fig. S7 and Tables S4 and S5). Unlike vanadate, 
however, many mutants in distal shells increased tungstate affinity, 
with the largest enhancements (10-fold) for mutations clustering 
near PafA’s distal Zn2+ ion (Fig. 4 E and F).

At least 40% of the mutations (62 of 155) that increased tungstate 
affinities decreased catalysis, and more may have small or modest 
deleterious catalytic effects that are not detectable given the lower 
precision of our catalytic measurements (SI Appendix, Fig. S8 & see 
Many mutations reduce catalysis without impacting transition state 
analog-binding above). Also, the small number of mutations that give 
apparent increases in catalysis is consistent with the number of 
expected false positives for our statistical cutoff and give small effects 
(50 expected for a library of 1,004 mutants at a threshold of P < 0.05; 
mean 2.7 ± 1.7-fold effect) (50); thus, mutations appear to enhance 
TSA binding but not the enzyme’s cognate catalytic activity.

Correlations of TSA Affinity with Catalysis and Ground-State 
Analog (GSA) Affinity. A formal requirement for catalysis is 
preferential stabilization of the transition state relative to the 
ground state. Consistent with this expectation, mutational effects 
throughout PafA have much larger effects on catalysis than they 
do on binding of Pi (a GSA and substrate for the reverse reaction) 
(SI Appendix, Fig. S9) (50). As also expected, and as noted above, 
the effects from first and second-shell mutants on vanadate and 

tungstate binding correlated with deleterious catalytic effects 
(Figs. 3 A and B, 4 A and B, and 5) Nevertheless, the correlations 
between TSA binding and catalysis are largely lost beyond the 
second shell, as noted above, as are the correlations between the 
TSAs themselves (Fig. 5 and SI Appendix, Fig. S10). These results 
are consistent with the more distal residues tuning conformational 
states with a precision that discriminates between the actual 
transition state and the TSAs (Discussion).

Intriguingly, mutational effects that increase either tungstate or 
Pi binding (50, 62) correlate with one another for more distal 
residues compared to proximal residues (SI Appendix, Fig. S10) 
despite apparently different underlying causes for these effects—
the relief of electrostatic destabilization that increases Pi binding 
(50, 51, 62) and the increased occupancy of alternative confor-
mational states that are more complementary to the TSA, as 
described in the Discussion.

Discussion

Our measurements of 1,944 affinity constants for vanadate and 
tungstate binding to 1,004 PafA variants combined with our prior 
data detailing impacts on catalysis and for Pi binding for these 
same mutants yielded some expected and unanticipated results 
(50). The correspondence of deleterious catalytic (transition state, 
TS) and TSA effects in and around the active site matches the 
expectation that direct interactions to TS or TSA atoms with 
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Fig. 5. Comparison of catalytic effects and affinities of transition state and ground-state analogs. Distributions of catalytic and affinity effects (relative to WT 
PafA) for second-shell mutants with significantly deleterious catalytic effects (P < 0.05). For each plot, the two numbers denote the number of mutants with 
significant deleterious catalytic effects and which were measured for each parameter, and the number of mutants whose catalytic effects were measured, 
respectively. The solid black gridlines denote the WT value, and the dashed gridlines denote the mean fold-effect on each parameter for these mutants. The Pi 
affinity data are from reference (50).D
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similar charge and positioning contribute similar amounts of bind-
ing energy (Fig. 6 A and B) and that removing groups that help 
position these contacting residues (second shell) yield similar (but 
smaller) energetic consequences (Fig. 6C). In the simplest case, 
this reduction in the magnitude of observed effects would report 
on how a mutation alters the fraction of time spent by an active-
site residue in a state that is competent for catalysis (Fig. 6C). For 
example, the active-site arginine of E. coli alkaline phosphatase 
(R166) is mispositioned when its flanking aspartate residues 
(D101 and D153) are removed, leading to losses in catalysis and 
TSA binding but with effects that are smaller than those from 
removal of the arginine (41, 42). Analogous positioning effects of 
non-active-site mutations on the positioning of active-site residues 
have been observed in many other enzymes (e.g., refs. 63–66).

Data from the mutations in and contacting the active site can 
be described and interpreted using two-state models like those in 
Fig. 6, where a residue is either positioned or not positioned and 
the fraction of time it is correctly positioned determines the 
amount of catalysis that is observed. However, our full dataset 
paints a more complex picture, telling us that many positions 
throughout the enzyme communicate to the active site but do so 
in complex ways distinct from one another. Some mutations 
decrease catalysis while not affecting vanadate or tungstate binding, 
and others decrease catalysis while either decreasing or differentially 
impacting vanadate and tungstate binding, as summarized in 
Fig. 7. In principle, we could expand from our two-state model 
(Fig. 6) to a four-state model as shown in Fig. 7. In this model, 
the observed functional parameters are determined by the func-
tional properties of each of the four states, weighted by the popu-
lation of each. However, measuring more kinetic and 
thermodynamic constants for more mutants would likely reveal 
still more states, leading to far greater complexity. Further, we know 
from first principles that proteins exist as conformational ensembles 
defined by energy landscapes where the population of individual 
states can vary subtly or extensively with sequence (66–81). We 
therefore consider our functional results in terms of energy land-
scapes and the conformational ensembles they specify.

Overall, our results reveal two remarkable features about PafA’s 
energy landscape. First, they indicate that many positions through-
out the enzyme communicate to the active site. Second, they tell us 
that this communication can yield exquisite specificity, discriminat-
ing between species that differ on the scale of tenths of Ångströms. 
Vanadate and tungstate are larger than phosphate, with mean bond 
lengths of 1.8 Å for vanadate and 1.7 Å for tungstate, compared to 
1.5 Å for phosphate (SI Appendix, Fig. S11), and there are additional 
differences in charge distributions and geometries between the TSAs 
and the reaction’s transition state that may also lead to discrimination 
(SI Appendix, Figs. S12 and S13) (82). Structural data further sup-
port this model and the high degree of positioning. Tungstate bound 
to the related E. coli alkaline phosphatase has a 164° axial O-W-O 
bond angle, more acute than expected for a pentavalent trigonal 
bipyramidal species (SI Appendix, Fig. S12), suggesting a suboptimal 
fit for the larger tungstate in sites evolved for the phosphoryl tran-
sition state and that distal mutations may allow the active site to 
better accommodate tungstate (Fig. 7 C and D).

As is typical when new properties are revealed, our results raise 
additional questions. For example, what determines which sites 
communicate to the active site and which do not? Conceptually, 
we can think of these effects in terms of dissipation of a perturba-
tion. If the alterations from the mutation can be accommodated by 
local rearrangements or if the alterations propagate away from rather 
than toward the active site, then effects on function and binding in 
the active site are not expected. If instead the conformational per-
turbations propagate to the active site, then function can be altered. 

What is surprising (to us) is the large number of positions that 
propagate effects to the active site (e.g., 161 positions with delete-
rious catalytic effects and 200 positions with significant changes to 
tungstate affinity when mutated). While we have observed this 
behavior only for one enzyme to date, we speculate that extensive 
connectivity to the active site may be a common feature of enzymes, 
perhaps more extensive for enzymes that must precisely fine-tune 
active-site conformational properties to achieve strong transition 
state stabilization and high discrimination between the transition 
state and ground state. Discrimination is required for catalysis and 
to prevent substrate or product inhibition (83–88).

A

B

C

Fig. 6. Physical models accounting for observed effects of mutating active-
site and second-shell residues. (A) A WT PafA active-site residue shown in 
a conformational equilibrium between two states. In State 1 (favored), 
R164 donates a hydrogen bond to an oxygen atom in the TS and TSA, 
promoting catalysis and TSA binding (M = V, W). In State 2 (disfavored), R164 
is mispositioned so that the hydrogen bond no longer forms, reducing both 
catalysis and TSA binding. (B) Ablation of the R164 side chain eliminates 
State 1, reducing catalysis and TSA binding to the same extent [to the level 
of WT State 2 alone (A)]. (C) Mutating a second-shell residue that positions 
R164 destabilizes State 1 and increases occupancy of State 2. This change in 
the conformational equilibrium equally reduces catalysis and TSA binding, 
proportional to the increased occupancy of State 2.
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If evolutionary forces led to the extensive use of long-range 
interactions to tune active-site conformations, then protein scaf-
folds would contain the innate potential for allostery. In other 
words, if communication to the active site is used to optimize 
function, then these evolved functional conduits could be further 
coopted by evolution to provide long-range communication in 
allostery and also in coupled conformational processes such as 
molecular motors and pumps that must coordinate conforma-
tional states at sites distal from the active site but depend on the 
reaction cycle that occurs at the active site (89, 90).

Evolution, to be efficient even on its long timescales, requires 
that complex changes occur in steps and follow pathways that 
provide selective advantages along the way. According to this 
model, early steps in the evolution of allostery would not be based 
on direct selection for allosteric regulation but rather based on the 
catalytic advantage from extensive connectivity to the active site. 
Analogously, enzymes evolved to catalyze new reactions appear to 
arise from enzymes having preexisting promiscuous activities that 
subsequently undergo selection to improve catalysis of the new 
reaction (91, 92).

This model of tuning precision is supported by the greater num-
ber of Gly than Val mutations that increase tungstate binding (95 
Gly vs. 50 Val mutants, SI Appendix, Figs. S14–S16 and Tables S6–
S9), as Gly substitutions allow greater freedom of motion and thus 
would be more likely to relax tuning. Val mutations can also of 
course disrupt this tuning but are less likely to broaden the enzyme’s 

conformations and thus less likely to increase occupancy of states 
that bind other molecules more strongly. Increased Pi binding also 
arises more frequently from Gly than Val mutations (222 Gly vs. 
109 Val mutants) (SI Appendix, Fig. S16) (50). Presumably the 
broadened conformational possibilities help the E•Pi complex 
adopt conformations that lessen electrostatic repulsion between Pi 
and the active-site threonine alkoxide (51, 62) as well as accom-
modate the larger tungstate. More generally, these differential Gly 
and Val effects also emphasize the interpretative benefits of meas-
uring the effects of more than one type of mutation.

There is overlap between the mutations that increase tungstate 
and Pi binding, with 109 mutations increasing both tungstate and 
Pi binding, 45 increasing tungstate binding only, and 204 increas-
ing Pi binding only (SI Appendix, Table S10). The overlap may 
reflect a flattening of portions of the energy landscape and thus a 
broadening of the conformational ensemble that increases the 
representation of different states that bind tungstate or Pi more 
strongly. Alternatively or in addition, there may be common states 
that bind both more effectively, perhaps creating space to sterically 
accommodate the longer W–O bonds and for movement of Pi 
away from the nucleophilic threonine alkoxide to reduce their 
electrostatic destabilization. No mutants favor vanadate binding, 
possibly because such states are more difficult to access. These 
findings speak to the complexity of the conformational landscape 
and underscore the need to investigate protein ensembles to under-
stand these effects (66–81).

Fig. 7. Physical models for the impacts of distal residue mutations that decouple catalytic and TSA affinity effects. (A) WT-favored State 1 is itself an ensemble of 
microstates (that is, states with smaller conformational changes than illustrated for the mutants in Fig. 6) with different levels of catalysis (Middle) and TSA binding 
(Bottom), denoted by color bars. The most populated WT microstate is optimal for catalysis but not for tungstate binding, whereas vanadate’s conformational 
flexibility allows the ligand to adopt more optimal geometries in each microstate. (B–D) Examples of distal mutational effects with differential impacts on catalysis 
and TSA binding due to alternation in microstate distributions. (B) Stabilization of a less catalytically competent microstate that maintains WT TSA affinities (blue). 
(C) Stabilization of a less catalytically competent microstate that preferentially binds the distorted tungstate geometry (pink). (D) Flattening of the conformational 
landscape due to increased flexibility results in similar occupancies of multiple microstates, including some with increased affinity for the distorted geometry of 
tungstate (green). Not shown are distal effects that phenocopy the effects described in Fig. 6B. For simplicity we show changes that do not alter vanadate affinity; 
additional states are required to account for mutants that alter vanadate affinity the same or differently than catalysis and tungstate affinity.D
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Our findings also provide an alternative model for the frequent 
observation of greater catalytic promiscuity of ancestrally recon-
structed enzymes (93, 94). While many or all reconstructed 
enzymes may accurately reproduce greater catalytic promiscuity 
present in the actual ancestors, lowered specificity could instead 
reflect imperfect reconstruction that lacks some active-site inter-
connections and thereby increase the population of states within 
the ensemble that are more efficient in catalyzing alternative 
reactions.

Practically, our results suggest a need to consider residues and 
interactions well beyond the active site to engineer new enzymes 
that rival those from nature. Our results also suggest a potential 
approach to reengineer existing enzymes for new functions: 
Adding glycine residues at remote positions with active-site con-
nectivity may identify positions that allow access to conformations 
that are more proficient in the desired activity; then, directed 
evolution targeting positions at and near these favorable sites 
might identify variants that favor states that are more active and 
that thereby improve the desired new activity.

Finally, we consider the type of models that may be needed to 
understand enzyme catalysis. On the one hand, scientists strive to 
find patterns in their data and simpler models. However, applying 
standard dimensionality reduction approaches to our multiparam-
eter PafA mutational data revealed a complex pattern without 
well-separated clusters (SI Appendix, Fig. S17). The absence of dis-
tinct clusters presumably reflects the underlying complexity of 
effects of individual mutations. The effects of each mutation on 
catalysis and vanadate, tungstate, and Pi affinities can be directly 
compared in SI Appendix, Fig. S18. More sophisticated clustering 
and dimensionality reduction techniques that consider multiple 
functional parameters and three-dimensional spatial relationships 
may help reveal common physical features that alter particular 
aspects of catalysis and may guide the development of models. 
Nevertheless, protein conformational landscapes are complex and, 
given this complexity, the basic rules of physics and chemistry (i.e., 
energetics of bond rotamers, hydrogen bonds, electrostatic interac-
tions, van der Waals interactions and sterics) may provide a firmer 
foundation for models that are interpretable and testable (66–81).

It is also possible that more complex models are required to 
account for enzyme catalysis. For example, Klinman has recently 
suggested that protein “quakes” are involved in transmitting ther-
mal energy from an enzyme’s surface to its active site (95–97). 
Nevertheless, our TSA-binding data indicate that long-range 
effects can arise through equilibrium effects on an enzyme’s con-
formational landscape. Thus, the presence of long-range effects 
does not necessarily indicate a need to invoke nonequilibrium 
functional models.

We now face a major and exciting challenge of relating the vast 
amounts of multidimensional quantitative data that can now be 
obtained to quantitative models and then testing those models via 
new, nontrivial predictions that they make. Overall, ensemble 
models seem to provide an appropriate level of complexity and 
rigor for framing models that are built from fundamental physical 
and chemical properties, do not compress and oversimply data, 
and can be tested and modified, extended or rejected as dictated 
by extensive and quantitative data that can be obtained via 
HT-MEK.

Materials and Methods

On-Chip Expression, HT-MEK Device Setup, and Expression and Purification 
of PafA Mutants. HT-MEK devices were used to recombinantly express PafA 
mutants as described previously (50). Briefly, devices were fabricated using stand-
ard soft lithography techniques and then aligned to PafA-eGFP mutant plasmid 

arrays deposited on epoxy-coated slides using a custom microarray printer. 
Following alignment, device surfaces were specifically patterned with anti-GFP 
antibody beneath “button” valves and passivated with BSA elsewhere; after surface 
patterning, cell-free expression mix was introduced into each chamber, solubilizing 
printed plasmid DNA. PafA-eGFP mutants were expressed at 37 °C for 45 min, 
incubated at room temperature for 90 min, and then immobilized on the surface 
of anti-GFP-patterned button valves and purified via washing with button valves 
closed.

Measuring Vanadate and Tungstate Affinities Using HT-MEK. Inhibition 
constants (Ki) for vanadate and tungstate were determined via competitive inhibi-
tion assays with the fluorogenic substrate cMUP (50 μM) as previously described 
for measurements of inorganic phosphate (Pi) inhibition (50). Vanadate meas-
urements used concentrations of 0, 0.25, 0.5, 1, 2, 5, and 10 μM for vanadate, in 
some cases with 100 μM vanadate added to the series; tungstate measurements 
used concentrations of 0, 0.5, 1, 2, 5, 10, 25, 100, 250, 500, and 1,000 μM for 
all experiments except two, which went up to 100 μM and 500 μM, respectively. 
For each mutant replicate, we fit initial rates of cMUP hydrolysis at each inhibitor 
concentration and then fit these initial rates to a standard competitive inhibition 
model, as previously described (50).

To ensure accurate quantification of TSA affinities (Kd), all experiments used 
a substrate concentration (50 µM) that is below the previously measured cMUP 
KM (50) for nearly all (>90%) of PafA variants and provides high signal to noise in 
fluorescence time-course measurements. As observed, Ki values are proportional 
to both the substrate KM and the intrinsic affinity (Kd), we used the Cheng–Prussoff 
relationship (98) and previously measured KM values for cMUP hydrolysis for 
each mutant (50) to correct for these modest systematic differences between the 
measured Ki and the Kd. Returned Kd values were within two-fold of the measured 
Ki values for 88% of mutants (SI Appendix, Fig. S19).

We used multiple quality control metrics to ensure that measurements from 
each chamber were due to the mutant printed in that chamber and not from 
cross-contamination between chambers, as described previously (50). To ensure 
each mutant expressed and immobilized successfully, we manually confirmed 
that each chamber contained a measurable eGFP spot (corresponding to [E] > 0.3 
nM) and that each spot was free of fluorescence artifacts. To ensure high-quality 
activity measurements, we included a catalytically inactive “fiducial” mutant T79G 
or chamber lacking a mutant DNA template (“Skipped”) in every 7th chamber, con-
sidered measured rates within these chambers to represent a local “background” 
rate, and culled data from any chambers in which measured activity was less than 
fivefold greater than an interpolated local background rate. To further ensure 
accurate activity measurements for the most catalytically compromised mutants, 
we implemented a tiered measurement strategy in which all mutants within 
the glycine and valine scanning libraries were measured together initially, and 
then the slowest mutants were selected, reprinted, and assayed again separately.

As described previously for Pi (50), we first normalized fitted KD values for each 
mutant to the median KD of the wild-type replicates within a given experiment and 
then calculated the median values for each mutant across experiments. Kd values 
from experiments containing only the slowest mutants (which did not include 
wild-type PafA) were not normalized. We determined the statistical significance of 
KD effects for each mutant relative to WT PafA using bootstrap hypothesis testing 
(P < 0.01) as previously described (50).

All progress curves, initial rate fits, inhibition curves, fitted Ki values, and Kd values 
after correction for each individual replicate measurement of each mutant, as well 
as median Kd values and measures of statistical significance for each mutant, are 
available in CSV and PDF files in the associated OSF repository (https://osf.io/k8uer/).

Identifying Upper and Lower Limits on Inhibition and Catalytic 
Measurements. Lower Kd limits (or upper Ka limits) arise when the measured 
(apparent) Ki is greater than the highest concentration of inhibitor assayed; that 
is, the inhibitor affinity is too weak to be accurately measured (three mutants total 
in our Val and Gly scanning libraries). Upper Kd limits (lower Ka limits) arise when 
a particular mutant’s cMUP KM was too low to be measured (50). In these cases, 
the Kd value obtained using the Cheng–Prussoff relationship is overestimated 
(five mutants total). To identify these limit cases, we flagged Kd values as lower 
Kd limits if the measured Ki was greater than two-fold above the highest vanadate 
or tungstate concentration for >50% of all measured replicates of that mutant, 
as previously implemented for Pi affinity measurements (50). For mutants whose D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
 o

n 
Ju

ly
 1

1,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

17
1.

66
.1

2.
19

9.

http://www.pnas.org/lookup/doi/10.1073/pnas.2219074120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2219074120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2219074120#supplementary-materials
https://osf.io/k8uer/


10 of 11   https://doi.org/10.1073/pnas.2219074120� pnas.org

measured cMUP KM values are upper limits, Kd values were denoted as upper 
limits; that is, the affinities are likely to be stronger than measured. For catalytic 
effects, upper limits are denoted for mutants with catalytic activities below the 
dynamic range of the assay, and lower limits are denoted for mutants with MeP 
KM values below the lowest substrate concentration used, as previously described 
(50). For both catalytic and inhibition measurements, upper and lower limits are 
denoted by arrows in the main text and SI Appendix, Supplementary Figures.

Recombinant E. coli Expression of WT PafA and Mutants and Tungstate 
Affinity Measurements. To ensure that observed inhibition effects are not due 
to the presence of the C-terminal eGFP tag, surface immobilization, or any other 
potential artifact of the HT-MEK platform, we recombinantly expressed and purified 
WT PafA and eight mutants in E. coli as previously described (51). Tungstate affinities 
were determined in 0.1 M sodium MOPS, pH 8.0, 500 mM NaCl, 100 mM ZnCl2 at 25 
°C using the commercial chromogenic substrate p-nitrophenyl phosphate (pNPP), a 
tungstate concentration range of 0 to 1 mM, and a Tecan Infinite M200 plate reader.

Assignment of Residues to Active-Site Interaction Shells. To determine the 
minimum number of interactions between each residue and the active site and 
assign residues to interaction shells, we used GetContacts (https://getcontacts.
github.io) to identify all contacts between residues in the WT PafA crystal structure. 
We then defined the active site as composed of all residues or ions making direct 
contacts with the substrate (T79, N100, K162, and R164, and the two Zn2+s.) The 
set of residues making at least one contact to any of these active-site components 
was then defined as the second shell. Residues making at least one contact to any 
of the second-shell residues but not contacting the active site were defined as third-
shell residues. Residues were then successively assigned to the more distal shells 
in the following general manner: For shell N, residues were defined as residues 
making contacts to shell N-1, but not to any of the residues in the lower shells.

Multiparameter Data Visualization Using UMAP. UMAP (99) was performed 
using its implementation in skikit-learn (100) in a Jupyter notebook (available 
at the OSF repository). The catalytic (kcat/KM, chem.) effects and vanadate, tungstate, 
and Pi affinities (log10 transformed) for all glycine and valine mutants for which 
these parameters were experimentally measurable (n = 928) were imported, and 
the UMAP reducer was trained and the two-dimensional dimensionality-reduced 
array was output using the “reducer.fit_transform” function.

Obtaining Geometric Parameters of Vanadium, Tungsten, and Phosphorus  
Compounds from the Cambridge Structural Database (CSD). We used 
the CSD Python API to search for all molecules containing at least one M-O 
bond, where M denotes vanadium, tungsten, or phosphorus. We then used the 
GeometryAnalyzer function to determine the number of bonds to the M atom, 
identify each M-O bond, assess if the oxygen was esterified or nonesterified, and 
determine all M-O bond lengths and bond angles. We then classified the valency 
of each molecule based on the number of bonds to the M atoms, and classified its 
geometry (tetrahedral, square pyramidal/planer/octahedral, trigonal bipyramidal, 
or undefined) based on bond angle values, as defined previously (52).

For the comparisons of tetrahedral forms, we selected all molecules containing 
only M-O oxides. We also included M-O oxide distances measured previously in 

the literature but not deposited in the CSD (101, 102). For the comparisons of 
tetrahedral esters, we selected all molecules containing a mixture of oxides and 
M-O-C esters and compared the bond length distributions of each type. As the 
number of esterifying atoms on each oxygen strongly affects M-O bond lengths, 
we only considered singly esterified oxygens when comparing lengths of ester-
ified M-O bonds.

For the comparisons of pentavalent molecules, the total number of molecules 
was limited, (especially for tungsten compounds). We therefore selected all pen-
tavalent molecules containing a mixture of oxide bonds and at least one M-O-C 
ester, again only comparing oxides or singly esterified oxygens.

All codes used to download, parse, and analyze these data are available at the 
OSF repository (https://osf.io/k8uer/).

Geometric Parameters of Vanadium and Tungsten Compounds Bound to 
Proteins in the PDB. PDB structures containing tungstate and vanadate com-
pounds bound to proteins were analyzed using the Bio.PDB package in Python. 
To infer connectivity and geometry of the bound molecules in each structure, we 
first identified all neighboring atoms within 2.5 Å of the metal atom. For each 
neighboring oxygen atom, we then calculated the number of atoms bonded to 
that atom within 2.5 Å. We assigned oxygens forming only one bond as oxides 
and others as esters and then calculated all bond lengths and angles involving 
the metal atom. Structures with five atoms bonded to the metal atom and one 
(and only one) bond angle larger than 160° (the angle between axial atoms) 
were defined as having pentavalent trigonal bipyramidal geometry; structures 
with four atoms bonded to the metal atoms (based on the above criteria) were 
assigned as tetrahedral.

Data, Materials, and Software Availability. All experimental data are 
provided as a CSV file in Dataset S1. Additionally, all experimental data, including 
per-experiment and per-mutant summary reports of the on-chip measurements, 
as well as all code used to process the data are available in the Open Science 
Foundation repository (https://osf.io/k8uer/) (103).
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